Py学习  »  Git

Stata学习:如何构建多层混合效应Logit模型?melogit

Stata与R学习 • 1 年前 • 159 次点击  

文献来源

  1. Fleten, S.-E., et al. (2024). The reliability pricing model and coal-fired generators in PJM
    1. Appendix B. Supplementary data【数据+Stata】

示例代码

cd C:\Download\1-s2.0-S0140988324002512-mmc1\ffuDataCodeEE
clear

import delim using kmeans_input_nrg_cap_Coal.csv

replace cappmt = cappmt*(365/1000)
replace cappmtdiff = cappmtdiff*(365/1000)
replace demgth = demgth*10000
gen coalng = ngfd - p_f
egen min_inyr = min(inyr)
gen inyr2 = inyr
replace inyr = inyr-min_inyr
encode state, gen(state2)
tsset plantgen year
gen abandon6 = 1 if (decision==5 | decision==6) & naics==22
replace abandon6 = 0 if (decision==1 | decision==2 | decision==3 | decision==4) & naics==22
gen capf=f.capacity
replace capf=0 if decision==6 | decision==5
keep if year<2019 & year>2007
gen cappmtdp=0
gen cappmtdn=0
gen pickp = (cappmtdiff>0)
gen pickn = (cappmtdiff<0)
replace cappmtdp = cappmtdiff if cappmtdiff>0
replace cappmtdn = cappmtdiff if cappmtdiff<0

egen mn_xtr = mean(xtreal), by(year zone)
gen dev_xtr = xtreal - mn_xtr
melogit abandon6 mn_xtr dev_xtr cappmtdiff inyr capacity demgth newent || pcode:, vce(robust) or

得到结果

Fitting fixed-effects model:

Iteration 0:  Log likelihood = -411.32349  
Iteration 1:  Log likelihood = -367.45373  
Iteration 2:  Log likelihood = -366.14862  
Iteration 3:  Log likelihood = -366.13745  
Iteration 4:  Log likelihood = -366.13745  

Refining starting values:

Grid node 0:  Log likelihood = -323.46369

Fitting full model:

Iteration 0:  Log pseudolikelihood = -323.46369  
Iteration 1:  Log pseudolikelihood = -302.15001  
Iteration 2:  Log pseudolikelihood = -295.03556  
Iteration 3:  Log pseudolikelihood = -293.39972  
Iteration 4:  Log pseudolikelihood =  -293.3419  
Iteration 5:  Log pseudolikelihood = -293.34723  
Iteration 6:  Log pseudolikelihood = -293.34822  
Iteration 7:  Log pseudolikelihood = -293.34835  
Iteration 8:  Log pseudolikelihood = -293.34837  

Mixed-effects logistic regression               Number of obs     =      1,701
Group variable: pcode                           Number of groups  =         97

                                                Obs per group:
                                                              min =          1
                                                              avg =       17.5
                                                              max =         77

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(7)      =      46.27
Log pseudolikelihood = -293.34837               Prob > chi2       =     0.0000
                                 (Std. err. adjusted for 97 clusters in pcode)
------------------------------------------------------------------------------
             |               Robust
    abandon6 | Odds ratio   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      mn_xtr |   .9601638   .0080005    -4.88   0.000     .9446104    .9759732
     dev_xtr |   .9830503   .0117958    -1.42   0.154     .9602007    1.006444
  cappmtdiff |   1.067458   .0221167     3.15   0.002     1.024978    1.111698
        inyr |   .9334783   .0186032    -3.45   0.001     .8977195    .9706614
    capacity |    .997196    .001381    -2.03   0.043     .9944929    .9999063
      demgth |   .9775999   .0087958    -2.52   0.012     .9605117    .9949922
      newent |   1.000881   .0008661     1.02   0.309     .9991852     1.00258
       _cons |   .1197382   .0946848    -2.68   0.007     .0254175    .5640703
-------------+----------------------------------------------------------------
pcode        |
   var(_cons)|   9.909341   3.781994                       4.69003    20.93697
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).

期刊排版

(完)

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/169251