社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Git

Stata学习:如何构建多层混合效应Logit模型?melogit

Stata与R学习 • 1 年前 • 145 次点击  

文献来源

  1. Fleten, S.-E., et al. (2024). The reliability pricing model and coal-fired generators in PJM
    1. Appendix B. Supplementary data【数据+Stata】

示例代码

cd C:\Download\1-s2.0-S0140988324002512-mmc1\ffuDataCodeEE
clear

import delim using kmeans_input_nrg_cap_Coal.csv

replace cappmt = cappmt*(365/1000)
replace cappmtdiff = cappmtdiff*(365/1000)
replace demgth = demgth*10000
gen coalng = ngfd - p_f
egen min_inyr = min(inyr)
gen inyr2 = inyr
replace inyr = inyr-min_inyr
encode state, gen(state2)
tsset plantgen year
gen abandon6 = 1 if (decision==5 | decision==6) & naics==22
replace abandon6 = 0 if (decision==1 | decision==2 | decision==3 | decision==4) & naics==22
gen capf=f.capacity
replace capf=0 if decision==6 | decision==5
keep if year<2019 & year>2007
gen cappmtdp=0
gen cappmtdn=0
gen pickp = (cappmtdiff>0)
gen pickn = (cappmtdiff<0)
replace cappmtdp = cappmtdiff if cappmtdiff>0
replace cappmtdn = cappmtdiff if cappmtdiff<0

egen mn_xtr = mean(xtreal), by(year zone)
gen dev_xtr = xtreal - mn_xtr
melogit abandon6 mn_xtr dev_xtr cappmtdiff inyr capacity demgth newent || pcode:, vce(robust) or

得到结果

Fitting fixed-effects model:

Iteration 0:  Log likelihood = -411.32349  
Iteration 1:  Log likelihood = -367.45373  
Iteration 2:  Log likelihood = -366.14862  
Iteration 3:  Log likelihood = -366.13745  
Iteration 4:  Log likelihood = -366.13745  

Refining starting values:

Grid node 0:  Log likelihood = -323.46369

Fitting full model:

Iteration 0:  Log pseudolikelihood = -323.46369  
Iteration 1:  Log pseudolikelihood = -302.15001  
Iteration 2:  Log pseudolikelihood = -295.03556  
Iteration 3:  Log pseudolikelihood = -293.39972  
Iteration 4:  Log pseudolikelihood =  -293.3419  
Iteration 5:  Log pseudolikelihood = -293.34723  
Iteration 6:  Log pseudolikelihood = -293.34822  
Iteration 7:  Log pseudolikelihood = -293.34835  
Iteration 8:  Log pseudolikelihood = -293.34837  

Mixed-effects logistic regression               Number of obs     =      1,701
Group variable: pcode                           Number of groups  =         97

                                                Obs per group:
                                                              min =          1
                                                              avg =       17.5
                                                              max =         77

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(7)      =      46.27
Log pseudolikelihood = -293.34837               Prob > chi2       =     0.0000
                                 (Std. err. adjusted for 97 clusters in pcode)
------------------------------------------------------------------------------
             |               Robust
    abandon6 | Odds ratio   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      mn_xtr |   .9601638   .0080005    -4.88   0.000     .9446104    .9759732
     dev_xtr |   .9830503   .0117958    -1.42   0.154     .9602007    1.006444
  cappmtdiff |   1.067458   .0221167     3.15   0.002     1.024978    1.111698
        inyr |   .9334783   .0186032    -3.45   0.001     .8977195    .9706614
    capacity |    .997196    .001381    -2.03   0.043     .9944929    .9999063
      demgth |   .9775999   .0087958    -2.52   0.012     .9605117    .9949922
      newent |   1.000881   .0008661     1.02   0.309     .9991852     1.00258
       _cons |   .1197382   .0946848    -2.68   0.007     .0254175    .5640703
-------------+----------------------------------------------------------------
pcode        |
   var(_cons)|   9.909341   3.781994                       4.69003    20.93697
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).

期刊排版

(完)

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/169251
 
145 次点击