社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

【NTU博士论文】图结构数据的深度学习

数据派THU • 1 年前 • 245 次点击  
来源:专知
本文为论文介绍,建议阅读5分钟
本论文旨在通过解决这些关键问题,推动图表示学习的发展。


图结构数据在各个领域中广泛存在,表示实体之间有价值的关系信息。然而,大多数深度学习技术,如卷积神经网络(CNN)和循环神经网络(RNN),都是针对网格结构数据设计的,难以处理图数据。这引发了对使用图神经网络(GNNs)进行图表示学习的日益兴趣。GNNs通常通过消息传递将图结构融入神经网络层中。然而,图神经网络仍面临诸多挑战,如缺乏严格的基准、模型表达能力的局限性和较差的可扩展性。
本论文旨在通过解决这些关键问题,推动图表示学习的发展。首先,它开发了全面的基准,用于标准化评估GNNs。这包括中等规模的任务,涵盖社交网络、计算机视觉和组合优化等领域中节点、边和图分类的监督和半监督学习。论文还引入了一个专门设计的全新基准,用于测试大规模图中长距离交互建模的能力。
其次,论文致力于开发新的GNN架构,以提高图上的学习表现和泛化能力。它通过引入图形领域的归纳偏差(如利用稀疏性和设计Laplacian位置编码)将Transformer网络扩展到图结构数据领域。另一种技术通过使用具有信息量的图扩散特征,在GNN中分别学习结构和位置表示。这显著增强了模型的能力。
最后,论文解决了图模型(尤其是图Transformer)在大规模图上扩展的问题。它研究了设计原则,如整合高效的局部和全局图表示。基于此,提出了一个可扩展的图Transformer框架。该框架通过引入新颖的邻域采样和全局注意机制,捕捉大规模图中的局部结构和全局依赖关系。
总体而言,通过严格的基准测试、富有表现力的架构和可扩展的模型,本论文在多个方面对推动图结构数据上的深度学习做出了重要贡献。这些技术为GNN在处理复杂关系数据的实际应用中铺平了道路。



关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。




新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/174339