尽管SIFT是特征提取中最著名的方法,但是因为其计算量较大而无法在一些实时应用中使用。为了研究一种快速兼顾准确性的特征提取算法,Ethan Rublee等人在2011年提出了ORB特征:“ORB:An Efficient Alternative to SIFT or SURF”。ORB算法分为两部分,分别是特征点提取和特征点描述。ORB特征是将FAST特征点的检测方法与BRIEF特征描述子结合起来,并在它们原来的基础上做了改进与优化。其速度是SIFT的100倍,是SURF的10倍。Fast特征提取从图像中选取一点P,如图2。按以下步骤判断该点是不是特征点:以P为圆心画一个半径为3 pixel的圆;对圆周上的像素点进行灰度值比较,找出灰度值超过 l(P)+h 和低于 l(P)-h 的像素,其中l(P)是P点的灰度, h是给定的阈值;如果有连续n个像素满足条件,则认为P为特征点。一般n设置为9。为了加快特征点的提取,首先检测1、9、5、13位置上的灰度值,如果P是特征点,那么这四个位置上有3个或3个以上的像素满足条件。如果不满足,则直接排除此点。
深度学习解决特征点提取的思路是利用深度神经网络提取特征点而不是手工设计特征,它的特征检测性能与训练样本、网络结构紧密相关。一般分为特征检测模块和描述子计算模块。在这里以应用较为广泛的SuperPoint为例介绍该方法的主要思路。该方法采用了自监督的全卷积网络框架,训练得到特征点(keypoint)和描述子(descriptors)。自监督指的是该网络训练使用的数据集也是通过深度学习的方法构造的。该网络可分为三个部分(见图1),(a)是BaseDetector(特征点检测网络),(b)是真值自标定模块。(c)是SuperPoint网络,输出特征点和描述子。虽然是基于深度学习的框架,但是该方法在Titan X GPU上可以输出70HZ的检测结果,完全满足实时性的要求。