2025最新最全更新版因果推断、DID、机器学习书籍、课程、pdf、代码资源汇总 2024年9月25日更新的现代DID方法前沿教材(TWFE、平行趋势、交错DID、异质稳健估计量等) 书目:Credible Answers to Hard Questions:Differences-in-Differences for Natural Experiments
9月25日更新的现代DID方法前沿教材(TWFE、平行趋势、交错DID、异质稳健估计量等)
伯克利"因果推断第一课"书籍, 附PDF书籍、R和Python代码 全书在arXiv预印本(https://arxiv.org/abs/2305.18793)可以获取,总共分有六部分,共29个章节。
书籍信息为:
Ding, Peng. 2023. A First Course in Causal Inference . -Link-, -PDF- pdf文档,链接为Gitee仓库:A First Course in Causal Inference: A First Course in Causal Inference (gitee.com) https://gitee.com/econometric/a-first-course-in-causal-inference 因果推断书籍:应用R语言进行因果分析 该书籍为网页版本,链接如下:
https://bookdown.org/paul/applied-causal-analysis/ img 书籍推荐--基于机器学习的因果推理教程
img https://bookdown.org/stanfordgsbsilab/ml-ci-tutorial/
最新其他AI+ML因果推断书籍 Courses
https://causalinference.gitlab.io/tutorials/
ML与AI驱动的应用因果推断
书籍汇总
因果推断
斯科特·坎宁安(Scott Cunningham) 著
《计量经济学及Stata应用》第 2 版
因果推断入门
作者:保罗·R.罗森鲍姆(PAULR.ROSENBAUM) 因果推断初步 微观计量经济学导论
因果推断与效应评估的计量经济学
来源:Awesome Causal Inference 2023最新_因果推断书籍汇总 Causal Inference for the Brave and True
Author : Matheus Facure (Nubank) Causal Inference: The Mixtape
Author : Scott Cunningham (Baylor University)
Author : Nick C. Huntington-Klein (Seattle University) [YouTube] Causal Inference: What If
Author : Miguel Hernan (Harvard University) Causal Inference in Python
Author : Martin Huber (University of Fribourg) Causal Inference and Discovery in Python
Quasi-Experimentation: A Guide to Design and Analysis
Author : Charles S. Reichardt
Impact Evaluation: Treatment Effects and Causal Analysi
Author : Markus Frölich, Stefan Sperlich Handbook of Graphical Models
Author : Marloes Maathuis, Mathias Drton, Steffen Lauritzen, Martin Wainwright Author : D. Mackenzie, J. Pearl
Targeted Learning in Data Science - Causal Inference for Complex Longitudinal Studies
Author : Mark J. van der Laan, Sherri Rose Elements of Causal Inference: Foundations and Learning Algorithms
Author : Jonas Peters, Dominik Janzing, Bernhard Schölkopf Statistical Causal Inferences and Their Applications in Public Health Research
Causal Inference in Statistics: A Primer
Author : Judea Pearl, Madelyn Glymour, Nicholas P. Jewell Causal Inference for Statistics, Social, and Biomedical Sciences
Author : Guido W. Imbens (Stanford University), Donald B. Rubin (Harvard University) Counterfactuals and Causal Inference
Author : Stephen L. Morgan (Johns Hopkins University), Christopher Winship (Harvard University) Statistical Methods for Dynamic Treatment Regimes
Author : Bibhas Chakraborty (Columbia University), Erica E.M. Moodie (McGill University) Handbook of Causal Analysis for Social Researc
Author : Stephen L. Morgan (Johns Hopkins University) Targeted Learning - Causal Inference for Observational and Experimental Data
Author : Mark J. van der Laan, Sherri Rose Design of Observational Studies
Author : Paul R. Rosenbaum Mostly Harmless Econometrics: An Empiricist's Companio
Author : Joshua D. Angrist, Jörn-Steffen Pischke
Author : Judea Pearl (University of California, Los Angeles) Unified Methods for Censored Longitudinal Data and Causality
Authors : Mark J. van der Laan, James M. Robins
推荐:经典计量经济学教材+31本因果推断书籍资源(附部分代码及PDF)
推荐:作者主页+31本因果推断教材(附代码及PDF) 1、 Bruce E. Hansen主页 PROBABILITY AND STATISTICS FOR ECONOMISTS Princeton University Press, 2022
ECONOMETRICS Princeton University Press, 2022
Hansen B E . 2021. Econometrics. Princeton University Press. Data and Contents , PDF , -PDF2- 2、 Jeffrey M. Wooldridge (msu.edu) 3、 Josh Angrist | MIT Economics 4、 Jörn-Steffen Pischke | NBER 乔舒亚·安格里斯特,约恩-斯特芬·皮施克. 基本无害的计量经济学[M]. 格致出版社,2012. 乔舒亚·安格里斯特,约恩-斯特芬·皮施克. 精通计量:从原因到结果的探寻之旅[M]. 格致出版社,2019. 代码链接
https://gitee.com/econometric/mostly-harmless-replication
5、 Alberto Abadie作者主页 [Synthetic Control Methods Center for Statistics and Machine Learning June 2022.pdf (mit.edu)](https://economics.mit.edu/sites/default/files/inline-files/Synthetic Control Methods Center for Statistics and Machine Learning June 2022.pdf)
[Conference on Synthetic Controls and Related Methods May 2019.pdf (mit.edu)](https://economics.mit.edu/sites/default/files/inline-files/Conference on Synthetic Controls and Related Methods May 2019.pdf)
6、 Welcome to the Webpage of Jens Hainmueller (stanford.edu) 推荐:31本因果推断教材(附代码及PDF) 1、Causal Inference: The Mixtape 书籍网页在线地址为:https://mixtape.scunning.com/index.html
来源:https://mixtape.scunning.com/index.html 配套代码数据:
为了方便大家学习,我们将相关代码fork到了码云仓库,大家可以在线收藏学习 https://gitee.com/econometric/causal--inference--the--mixtape 2、Causal Inference: What If 书籍开源地址:https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
下载地址:https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1268/2019/10/ci_hernanrobins_14oct19.pdf
代码链接
https://gitee.com/econometric/causal_inference_python_code
3、Mostly Harmless Econometrics 基本无害的计量经济学:实证研究者指南
代码链接
https://gitee.com/econometric/mostly-harmless-replication
3、Mastering Econometrics 精通计量:从原因到结果的探寻之旅
《Mastering Metrics:The Path from Cause to Effect》
4、基本有用的计量经济学(MUSE)
代码链接
https://gitee.com/econometric/causalinference 5、The Effect: An Introduction to Research Design and Causality 代码链接
https://gitee.com/econometric/CausalitySlides
6、《社会经济政策的计量经济学评估——理论与应用》 7、Causal Inference:Measuring the Effect of X on y 网址为:http://pped.org/cimexy.pdf
http://pped.org/cimexy.pdf
8、CAUSALITY by Judea Pearl 电子书链接为:
9、Causal Inference for Statistics, Social,and Biomedical Sciences:An Introduction img 10、The Book of Why The New Science of Cause and Effect 作者: [美]朱迪亚·珀尔(Judea Pearl) / [美]达纳·麦肯齐(Dana Mackenzie)
出版社: 中信出版集团股份有限公司
副标题: 关于因果关系的新科学
原作名: The Book of Why : The New Science of Cause and Effect
译者: 江生 / 于华
出版年: 2019-7-1
内容简介:在本书中,人工智能领域的权威专家朱迪亚·珀尔及其同事领导的因果关系革命突破多年的迷雾,厘清了知识的本质,确立了因果关系研究在科学探索中的核心地位。而因果关系科学真正重要的应用则体现在人工智能领域。作者在本书中回答的核心问题是:如何让智能机器像人一样思考?换言之,“强人工智能”可以实现吗?借助因果关系之梯的三个层级逐步深入地揭示因果推理的本质,并据此构建出相应的自动化处理工具和数学分析范式,作者给出了一个肯定的答案。作者认为,今天为我们所熟知的大部分机器学习技术,都建基于相关关系,而非因果关系。要实现强人工智能,乃至将智能机器转变为具有道德意识的有机体,我们就必须让机器学会问“为什么”,也就是要让机器学会因果推理,理解因果关系。或许,这正是我们能对准备接管我们未来生活的智能机器所做的最有意义的工作。
推荐理由:
在此之前,珀尔教授已经出版过三部因果关系科学的专著,读者群仅限于数据分析或者人工智能的研究者,影响范围很窄。这本书则是这些专著的科普版,其面向更广泛的读者群体,着重阐述思想而非拘泥于数学细节。对渴望了解因果推断的人们来说,它既是因果关系科学的入门书,又是关于这门学问从萌发到蓬勃发展的一部简史,其中不乏对当前的人工智能发展现状的反思和对未来人工智能发展方向的探索。正如作者所期待的,这场因果革命将带给人们对强人工智能更深刻的理解。
img img 11、Causality:Models, Reasoning and Inference 作者: Judea Pearl
出版社: Cambridge University Press
副标题: Models, Reasoning and Inference
出版年: 2009-9-14
img 12、Counterfactuals and Causal Inference 作者: Stephen L. Morgan / Christopher Winship
出版社: Cambridge University Press
副标题: Methods and Principles for Social Research
出版年: 2014-11-17
13、Elements of Causal Inference
书籍免费获取地址:https://library.oapen.org/bitstream/id/056a11be-ce3a-44b9-8987-a6c68fce8d9b/11283.pdf
14、因果推断实用计量方法 15、大侦探经济学 : 现代经济学中因果推断革命 16、Explanation in Causal Inference : Methods for Mediation and Interaction Tyler VanderWeele / Oxford University Press / 17、Causality : Statistical Perspectives and Applications Berzuini, Carlo; Dawid, Philip; Bernardinell, Luisa / Wiley-Blackwell / 18、Causal Inference in Statistics : A Primer Judea Pearl / Wiley 19、The Theory of the Design of Experiments (Monographs on Statistics and Applied Probability) D.R. Cox、N. Reid / Chapman & Hall/CRC / 20、因果推理:基础与学习算法 [荷] 乔纳斯·彼得斯 / 机械工业出版社 21、Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition : A Regression-Based Approach Andrew F. Hayes / Guilford Press / 22、Fundamentals of Causal Inference : With R Babette A. Brumback / Chapman and Hall/CRC / 23、统计因果推理入门 : 翻译版,Judea Pearl、Madelyn Glymour、Nicholas P.Jewell / 杨矫云、安宁 / 高等教育出版社 / 24、Causality and Explanation Wesley C. Salmon / Oxford University Press / 25、Causation, Prediction and Search : Second Edition Peter Spirtes、Clark Glymour、Richard Scheines / The MIT Press / 26、 Statistical Tools for Causal Inference (chabefer.github.io) 27、Natural Experiments in the Social Sciences : A Design-Based Approach,Thad Dunning / Cambridge University Press / 28、Finding Pathways : Mixed-Method Research for Studying Causal Mechanisms Nicholas Weller、Jeb Barnes / Cambridge University Press 29、Causal Inference for The Brave and True https://matheusfacure.github.io/python-causality-handbook/landing-page.html
30、调节效应和中介效应分析,温忠麟、刘红云、侯杰泰 / 教育科学出版社 / 31、Elements of Causal Inference : Foundations and Learning Algorithms,Jonas Peters、Dominik Janzing、Bernhard Schölkopf / The MIT Press /