x = tf.constant([1.0, 2.0, 3.0, 4.0], shape=[4, 1], dtype=tf.float32)y = tf.constant([0.0, -1.0, -2.0, -3.0], shape=[4, 1], dtype=tf.float32)W = tf.Variable(tf.random.normal([1, 1]), name='weight')b = tf.Variable(tf.zeros([1]), name='bias')y_pred = tf.matmul(x, W) + bloss = tf.reduce_mean(tf.square(y_pred - y))optimizer = tf.optimizers.SGD(learning_rate=0.01)with tf.GradientTape() astape: y_pred = tf.matmul(x, W) + b loss = tf.reduce_mean(tf.square(y_pred - y))grads = tape.gradient(loss, [W, b])optimizer.apply_gradients(zip
(grads, [W, b])) |