Py学习  »  机器学习算法

机器学习学术速递[9.9]

arXiv每日学术速递 • 2 周前 • 52 次点击  

点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.LG 方向,今日共计223篇


大模型相关(27篇)

【1】Interleaving Reasoning for Better Text-to-Image Generation
标题:交错推理用于更好的文本到图像生成
链接:https://arxiv.org/abs/2509.06945

作者:uang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, Junbo Qiao, Yue Guo, Yao Hu, Zhenfei Yin, Philip Torr, Yu Cheng, Wanli Ouyang, Shaohui Lin


【2】Outcome-based Exploration for LLM Reasoning
标题:基于结果的LLM推理探索
链接:https://arxiv.org/abs/2509.06941

作者:, Julia Kempe, Remi Munos
备注:26 pages, 11 figures


【3】Proof-Carrying Numbers (PCN): A Protocol for Trustworthy Numeric Answers from LLMs via Claim Verification
标题:携带证明号(PCE):通过索赔验证从LLM获得值得信赖的数字答案的协议
链接:https://arxiv.org/abs/2509.06902

作者:Solatorio


【4】Aligning Large Vision-Language Models by Deep Reinforcement Learning and Direct Preference Optimization
标题:通过深度强化学习和直接偏好优化调整大型视觉语言模型
链接:https://arxiv.org/abs/2509.06759

作者: Nguyen, Campbell Wilson, Janis Dalins
备注:Accepted for publication in the Proceedings of the 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)


【5】Ban&Pick: Achieving Free Performance Gains and Inference Speedup via Smarter Routing in MoE-LLMs
标题:禁止与选择:通过MoE-LLM中的更智能路由实现免费性能收益和推理加速
链接:https://arxiv.org/abs/2509.06346

作者:Chen, Peisong Wang, Yuantian Shao, Jian Cheng
备注:20 pages, 9 figures


【6】A Fragile Number Sense: Probing the Elemental Limits of Numerical Reasoning in LLMs
标题:脆弱的数字感:探索LLM中数字推理的元素限制
链接:https://arxiv.org/abs/2509.06332

作者:ahman, Aashwin Ananda Mishra


【7】Text-Trained LLMs Can Zero-Shot Extrapolate PDE Dynamics
标题:经过文本训练的LLM可以Zero-Shot外推PED动态
链接:https://arxiv.org/abs/2509.06322

作者:o, Nicolas Boullé, Toni J.B. Liu, Raphaël Sarfati, Christopher J. Earls


【8】RecMind: LLM-Enhanced Graph Neural Networks for Personalized Consumer Recommendations
标题:RecMind:用于个性化消费者推荐的LLM增强图形神经网络
链接:https://arxiv.org/abs/2509.06286

作者:, Youwei Lu, Chen Yang, Jinming Xing


【9】From Implicit Exploration to Structured Reasoning: Leveraging Guideline and Refinement for LLMs
标题:从隐式探索到结构化推理:LLM的利用指南和细化
链接:https://arxiv.org/abs/2509.06284

作者:Chen, Zhuo Wang, Mingxi Zou, Zhucong Li, Zhijian Zhou, Song Wang, Zenglin Xu


【10】FineServe: Precision-Aware KV Slab and Two-Level Scheduling for Heterogeneous Precision LLM Serving
标题:FineServe:用于异类精确LLM服务的精确感知GV平板和两级调度
链接:https://arxiv.org/abs/2509.06261

作者:Bin, Seungbeom Choi, Jimyoung Son, Jieun Choi, Daseul Bae, Daehyeon Baek, Kihyo Moon, Minsung Jang, Hyojung Lee


【11】Reasoning Language Model for Personalized Lung Cancer Screening
标题:肺癌个体化筛查的推理语言模型
链接:https://arxiv.org/abs/2509.06169

作者:u, Ge Wang


【12】Benchmarking Gender and Political Bias in Large Language Models
标题:大型语言模型中的性别和政治偏见基准
链接:https://arxiv.org/abs/2509.06164

作者:ng, Xudong Han, Timothy Baldwin
备注:The 8th International Conference on Natural Language and Speech Processing (Oral)


【13】PolicyEvolve: Evolving Programmatic Policies by LLMs for multi-player games via Population-Based Training
标题:Policy Evolve:LLM通过基于人群的训练为多人游戏制定程序化政策
链接:https://arxiv.org/abs/2509.06053

作者:v, Hangzhi Liu, Zhi Luo, Hongjie Zhang, Jie Ou


【14】ALPHA: LLM-Enabled Active Learning for Human-Free Network Anomaly Detection
标题:ALA:LLM支持的主动学习,用于无人网络异常检测
链接:https://arxiv.org/abs/2509.05936

作者:uo, Shivesh Madan Nath Jha, Akruti Sinha, Zhizhen Li, Yuchen Liu
备注:Accepted at 44th IEEE International Performance Computing and Communications Conference (IPCCC 2025)


【15】X-SQL: Expert Schema Linking and Understanding of Text-to-SQL with Multi-LLMs
标题:X-SQL:使用多LLM对文本到SQL的专家模式链接和理解
链接:https://arxiv.org/abs/2509.05899

作者:g


【16】Let's Roleplay: Examining LLM Alignment in Collaborative Dialogues
标题:让我们角色扮演:审视协作对话中的LLM一致性
链接:https://arxiv.org/abs/2509.05882

作者:Nath, Carine Graff, Nikhil Krishnaswamy


【17】Finetuning LLMs for Human Behavior Prediction in Social Science Experiments
标题:社会科学实验中人类行为预测的LLM微调
链接:https://arxiv.org/abs/2509.05830

作者:lluri, Shengguang Wu, Joon Sung Park, Michael S. Bernstein
备注:16 pages, 5 figures


【18】Automating API Documentation with LLMs: A BERTopic Approach
标题:使用LLM自动化API文档:BERTopic方法
链接:https://arxiv.org/abs/2509.05749

作者:in Naghshzan
备注:None


【19】Cross-Service Threat Intelligence in LLM Services using Privacy-Preserving Fingerprints
标题:使用隐私保护指纹的LLM服务中的跨服务威胁情报
链接:https://arxiv.org/abs/2509.05608

作者:l, Natalie Isak, Matthew Dressman


【20】Neural Breadcrumbs: Membership Inference Attacks on LLMs Through Hidden State and Attention Pattern Analysis
标题:神经面包屑:通过隐藏状态和注意力模式分析对LLM的成员推理攻击
链接:https://arxiv.org/abs/2509.05449

作者:hija, Manoj Ghuhan Arivazhagan, Vinayshekhar Bannihatti Kumar, Rashmi Gangadharaiah


【21】AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning
标题:AI在环:通过利用LLM和联邦学习保护隐私的实时欺诈检测和会话欺诈
链接:https://arxiv.org/abs/2509.05362

作者:ssain, Sai Puppala, Sajedul Talukder, Md Jahangir Alam
备注:This paper got accepted in 26th Privacy Enhancing Technologies Symposium (PETS 2026). We uploaded it into ArXiv as pre-print


【22】Beyond ROUGE: N-Gram Subspace Features for LLM Hallucination Detection
标题:Beyond ROUGE:用于LLM幻觉检测的N-Gram子空间功能
链接:https://arxiv.org/abs/2509.05360

作者: Evangelos Papalexakis


【23】Privacy-Preserving Offloading for Large Language Models in 6G Vehicular Networks
标题:6G车载网络中大型语言模型的隐私保护卸载
链接:https://arxiv.org/abs/2509.05320

作者:Badidi, Nouhaila El Khiyaoui, Aya Riany, Badr Ben Elallid, Amine Abouaomar
备注:7 pages, 6 figures, 1 algorithm, 5 equations


【24】Standard vs. Modular Sampling: Best Practices for Reliable LLM Unlearning
标题:标准抽样与模块抽样:可靠LLM忘记学习的最佳实践
链接:https://arxiv.org/abs/2509.05316

作者:ushipaka, Lucia Passaro, Tommaso Cucinotta


【25】Large Language Model Integration with Reinforcement Learning to Augment Decision-Making in Autonomous Cyber Operations
标题:大型语言模型与强化学习集成以增强自主网络运营中的决策
链接:https://arxiv.org/abs/2509.05311

作者:ll, François Rivest, Mariam El Mezouar, Ranwa Al Mallah


【26】Are LLM Agents Behaviorally Coherent? Latent Profiles for Social Simulation
标题:LLM代理人行为一致吗?社交模拟的潜在配置文件
链接:https://arxiv.org/abs/2509.03736

作者:ney, Josef Woldense, Zheng Robert Jia, Shirley Anugrah Hayati, My Ha Nguyen, Vipul Raheja, Dongyeop Kang
备注:25 pages, 9 figures, 7 tables


【27】Fisher Random Walk: Automatic Debiasing Contextual Preference Inference for Large Language Model Evaluation
标题:Fisher随机漫步:大型语言模型评估的自动去偏上下文偏好推断
链接:https://arxiv.org/abs/2509.05852

作者:ng, Alexander Belloni, Ethan X. Fang, Junwei Lu, Xiaoan Xu


Graph相关(图学习|图神经网络|图优化等)(17篇)

【1】Asynchronous Message Passing for Addressing Oversquashing in Graph Neural Networks
标题:图神经网络中用于解决过度挤压的非同步消息传递
链接:https://arxiv.org/abs/2509.06777

作者:se, Swagatam Das


【2】Long-Range Graph Wavelet Networks
标题:长期图子波网络
链接:https://arxiv.org/abs/2509.06743

作者:uerranti, Fabrizio Forte, Simon Geisler, Stephan Günnemann


【3】TrajAware: Graph Cross-Attention and Trajectory-Aware for Generalisable VANETs under Partial Observations
标题:TrajAware:在部分观察下绘制可概括的VANSYS的交叉注意和轨迹感知
链接:https://arxiv.org/abs/2509.06665

作者:, Ziyuan Bao, Eiman Kanjo
备注:10 pages, 6 figures, 3 tables


【4】A Survey of Generalization of Graph Anomaly Detection: From Transfer Learning to Foundation Models
标题:图异常检测的推广综述:从迁移学习到基础模型
链接:https://arxiv.org/abs/2509.06609

作者:n, Yu Zheng, Yue Tan, Yixin Liu
备注:Accepted by ICKG 2025. 8 pages, 5 figures


【5】PAC-Bayesian Generalization Bounds for Graph Convolutional Networks on Inductive Node Classification
标题:图卷积网络归纳节点分类的PAC-Bayesian推广界
链接:https://arxiv.org/abs/2509.06600

作者:g, Yong Liu


【6】DyC-STG: Dynamic Causal Spatio-Temporal Graph Network for Real-time Data Credibility Analysis in IoT
标题:DyC-STG:用于物联网实时数据可信性分析的动态因果时空图网络
链接:https://arxiv.org/abs/2509.06483

作者:heng, Boyi Li, Peihan Wu, Feiyi Chen, Xinkui Zhao, Mengying Zhu, Shuiguang Deng


【7】Graph Neural Networks for Resource Allocation in Interference-limited Multi-Channel Wireless Networks with QoS Constraints
标题:图神经网络在具有服务质量约束的干扰有限多通道无线网络中进行资源分配
链接:https://arxiv.org/abs/2509.06395

作者:, Changyang She, Jingge Zhu, Jamie Evans


【8】A Spatio-Temporal Graph Neural Networks Approach for Predicting Silent Data Corruption inducing Circuit-Level Faults
标题:预测导致电路级故障的无声数据损坏的时空图神经网络方法
链接:https://arxiv.org/abs/2509.06289

作者:i, Senling Wang, Hiroshi Kai, Yoshinobu Higami, Ruijun Ma, Tianming Ni, Xiaoqing Wen, Hiroshi Takahashi
备注:21 pages, 9 figures, plan to submit to ACM TODAES


【9】MCIGLE: Multimodal Exemplar-Free Class-Incremental Graph Learning
标题:MCIGLE:多模式无示例类增量图学习
链接:https://arxiv.org/abs/2509.06219

作者:ou, Baojing Liu
备注:Accepted as a conference paper at KSEM 2025


【10】Metric Embedding Initialization-Based Differentially Private and Explainable Graph Clustering
标题:基于度量嵌入初始化的差异私有和可解释图集群
链接:https://arxiv.org/abs/2509.06214

作者:ou, Baojing Liu
备注:Accepted as a conference paper at KSEM 2025


【11】Data-Efficient Time-Dependent PDE Surrogates: Graph Neural Simulators vs Neural Operators
标题:数据高效的时间相关的PED替代品:图形神经模拟器与神经操作员
链接:https://arxiv.org/abs/2509.06154

作者:i Nayak, Somdatta Goswami
备注:21 pages including references. Supplementary Information provided


【12】GraMFedDHAR: Graph Based Multimodal Differentially Private Federated HAR
标题:GraMFedDHAR:基于图的多模式差异私有联邦HAR
链接:https://arxiv.org/abs/2509.05671

作者:lder, Tanmay Sen, Sarbani Palit


【13】Distributed Link Sparsification for Scalable Scheduling Using Graph Neural Networks (Journal Version)
标题:使用图神经网络进行可扩展调度的分布式链路稀疏化(期刊版本)
链接:https://arxiv.org/abs/2509.05447

作者: Zhao, Gunjan Verma, Ananthram Swami, Santiago Segarra
备注:15 pages, 18 figures, accepted to IEEE Transactions on Wireless Communications. This is the extended journal version of the conference paper arXiv:2203.14339 (Z. Zhao, A. Swami and S. Segarra, "Distributed Link Sparsification for Scalable Scheduling using Graph Neural Networks," IEEE ICASSP 2022, pp. 5308-5312, doi: https://doi.org/10.1109/ICASSP43922.2022.9747437 )


【14】Safeguarding Graph Neural Networks against Topology Inference Attacks
标题:保护图神经网络免受布局推理攻击
链接:https://arxiv.org/abs/2509.05429

作者:ong Yuan, Zhili Chen, Wendy Hui Wang
备注:Acctepted by ACM CCS'25


【15】RoboBallet: Planning for Multi-Robot Reaching with Graph Neural Networks and Reinforcement Learning
标题:RoboBallet:利用图神经网络和强化学习规划多机器人到达
链接:https://arxiv.org/abs/2509.05397

作者:ai, Keegan Go, Zhibin Li, Torsten Kroger, Stefan Schaal, Kelsey Allen, Jonathan Scholz
备注:Published in Science Robotics


【16】Learning from one graph: transductive learning guarantees via the geometry of small random worlds
标题:从一张图中学习:通过小型随机世界的几何学保证转换学习
链接:https://arxiv.org/abs/2509.06894

作者:ring, Luca Galimberti, Anastasis Kratsios, Giulia Livieri, A. Martina Neuman


【17】Automated Hierarchical Graph Construction for Multi-source Electronic Health Records
标题:多源电子健康记录自动分层图构建
链接:https://arxiv.org/abs/2509.06576

作者:ng, Doudou Zhou, Yue Liu, Junwei Lu, Tianxi Cai


Transformer(4篇)

【1】H$_{2}$OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers
标题:H$_{2}$OT:用于高效视频姿势Transformer的分层沙漏代币器
链接:https://arxiv.org/abs/2509.06956

作者:, Mengyuan Liu, Hong Liu, Pichao Wang, Shijian Lu, Nicu Sebe
备注:Accepted by TPAMI 2025, Open Sourced. arXiv admin note: substantial text overlap with arXiv:2311.12028


【2】From Noise to Narrative: Tracing the Origins of Hallucinations in Transformers
标题:从噪音到叙事:追踪《Transformer》中幻觉的起源
链接:https://arxiv.org/abs/2509.06938

作者:uresh, Jack Stanley, Sonia Joseph, Luca Scimeca, Danilo Bzdok


【3】Lane Change Intention Prediction of two distinct Populations using a Transformer
标题:基于Transformer的两种群换道意图预测
链接:https://arxiv.org/abs/2509.06529

作者: De Cristofaro, Cornelia Lex, Jia Hu, Arno Eichberger
备注:7 pages, 7 figures


【4】Learning spatially structured open quantum dynamics with regional-attention transformers
标题:使用区域注意力转换器学习空间结构开放量子动力学
链接:https://arxiv.org/abs/2509.06871

作者:, Eden Figueroa
备注:25 pages, 5 figures


GAN|对抗|攻击|生成相关(9篇)

【1】Imitative Membership Inference Attack
标题:模仿会员推断攻击
链接:https://arxiv.org/abs/2509.06796

作者:, Yuetian Chen, Hanshen Xiao, Bruno Ribeiro, Ninghui Li
备注:Code is available at: this https URL


【2】Group Effect Enhanced Generative Adversarial Imitation Learning for Individual Travel Behavior Modeling under Incentives
标题:激励下个人旅行行为建模的群体效应增强生成对抗模仿学习
链接:https://arxiv.org/abs/2509.06656

作者:Wu, Zhenlin Qin, Leizhen Wang, Xiaolei Ma, Zhenliang Ma


【3】On optimal solutions of classical and sliced Wasserstein GANs with non-Gaussian data
标题:基于非高斯数据的经典和切片Wasserstein GAN的最优解
链接:https://arxiv.org/abs/2509.06505

作者:ang, Hsin-Hua Shen, Yu-Chih Huang, Wan-Yi Lin, Shih-Chun Lin


【4】IGAff: Benchmarking Adversarial Iterative and Genetic Affine Algorithms on Deep Neural Networks
标题:IGAff:深度神经网络上的对抗迭代和遗传仿射算法基准
链接:https://arxiv.org/abs/2509.06459

作者:-Vasile Echim, Andrei-Alexandru Preda, Dumitru-Clementin Cercel, Florin Pop
备注:10 pages, 7 figures, Accepted at ECAI 2025 (28th European Conference on Artificial Intelligence)


【5】DCMI: A Differential Calibration Membership Inference Attack Against Retrieval-Augmented Generation
标题:DCMI:针对检索增强生成的差异校准成员资格推断攻击
链接:https://arxiv.org/abs/2509.06026

作者:, Xiangtao Meng, Yingkai Dong, Zheng Li, Shanqing Guo


【6】Reasoning Introduces New Poisoning Attacks Yet Makes Them More Complicated
标题:推理引入了新的中毒攻击,但使它们变得更加复杂
链接:https://arxiv.org/abs/2509.05739

作者:rster, Ilia Shumailov, Yiren Zhao, Harsh Chaudhari, Jamie Hayes, Robert Mullins, Yarin Gal


【7】Biomedical Literature Q&A System Using Retrieval-Augmented Generation (RAG)
标题:使用检索增强生成(RAG)的生物医学文献问答系统
链接:https://arxiv.org/abs/2509.05505

作者:g, Lee-Chi Wang, Bhavesh Ghanchi, Sanjana Dumpala, Shreyash Kakde, Yen Chih Chen
备注:10 pages, 6 figures, 3 tables


【8】Ensembling Membership Inference Attacks Against Tabular Generative Models
标题:针对表格生成模型的集合成员推断攻击
链接:https://arxiv.org/abs/2509.05350

作者:rd, Yuxuan Yang, Chi-Hua Wang, Guang Cheng


【9】Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance
标题:想象替代方案:通过语言指导实现高分辨率3D反事实医学图像生成
链接:https://arxiv.org/abs/2509.05978

作者:ohamed, Brennan Nichyporuk, Douglas L. Arnold, Tal Arbel


半/弱/无/有监督|不确定性|主动学习(7篇)

【1】Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs
标题:使用增强负对的对比自监督网络入侵检测
链接:https://arxiv.org/abs/2509.06550

作者:ie, Hanan Hindy, Christos Tachtatzis, Robert Atkinson
备注:Published in: Proceedings of IEEE Conference on Cyber Security and   Resilience (CSR), 2025. Official version:   https://doi.org/10.1109/CSR64739.2025.11129979 Code:   https://github.com/jackwilkie/CLAN


【2】Predicting Fetal Outcomes from Cardiotocography Signals Using a Supervised Variational Autoencoder
标题:使用受监督变分自动编码器从子宫内膜图信号预测胎儿结局
链接:https://arxiv.org/abs/2509.06540

作者:aday, Beth Albert, Gabriel Davis Jones


【3】SPINN: An Optimal Self-Supervised Physics-Informed Neural Network Framework
标题:SPINN:一个最佳自我监督的物理知情神经网络框架
链接:https://arxiv.org/abs/2509.05886

作者:yeshshirazinezhad


【4】Performance of Conformal Prediction in Capturing Aleatoric Uncertainty
标题:保形预测在捕捉感性不确定性中的性能
链接:https://arxiv.org/abs/2509.05826

作者:sighe Hagos, Claes Lundström


【5】DQS: A Low-Budget Query Strategy for Enhancing Unsupervised Data-driven Anomaly Detection Approaches
标题:DQS:一种用于增强无监督数据驱动异常检测方法的低预算查询策略
链接:https://arxiv.org/abs/2509.05663

作者:reia, Jan-Christoph Goos, Thomas Bäck, Anna V. Kononova
备注:Submitted to the Reliability Engineering & System Safety journal


【6】Self-supervised Learning for Hyperspectral Images of Trees
标题:树木高光谱图像的自我监督学习
链接:https://arxiv.org/abs/2509.05630

作者:Rahman, Saurav Kumar, Santosh S. Palmate, M. Shahriar Hossain


【7】Uncertainty Quantification in Probabilistic Machine Learning Models: Theory, Methods, and Insights
标题:概率机器学习模型中的不确定性量化:理论、方法和见解
链接:https://arxiv.org/abs/2509.05877

作者:jirak, Anand Ravishankar, Petar M. Djuric
备注:Accepted to EUSIPCO 2025


迁移|Zero/Few/One-Shot|自适应(10篇)

【1】Staying in the Sweet Spot: Responsive Reasoning Evolution via Capability-Adaptive Hint Scaffolding
标题:留在最佳点:通过能力自适应提示支架的响应式推理进化
链接:https://arxiv.org/abs/2509.06923

作者:, Zexu Sun, Jinman Zhao, Erxue Min, Yongcheng Zeng, Hui Wu, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Xu Chen, Zhi-Hong Deng
备注:Work in progress


【2】CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
标题:CogGuide:Zero-Shot全模式推理的类人指导
链接:https://arxiv.org/abs/2509.06641

作者: Shou (1 and 2), Zhi-Qiang You (1), Fang Wang (1), Hai-Bo Liu (3) ((1) NoDesk AI, Hangzhou, China, (2) Zhejiang University, Hangzhou, China, (3) Independent Researcher, Hangzhou, China)


【3】WindFM: An Open-Source Foundation Model for Zero-Shot Wind Power Forecasting
标题:WindFM:零冲击风力预测的开源基础模型
链接:https://arxiv.org/abs/2509.06311

作者: Yu Shi, Zongliang Fu, Shuo Chen, Wei Wei, Wei Xu, Jian Li


【4】New Insights into Optimal Alignment of Acoustic and Linguistic Representations for Knowledge Transfer in ASR
标题:对ASB中知识转移的声学和语言表示最佳对齐的新见解
链接:https://arxiv.org/abs/2509.05609

作者:, Peng Shen, Yu Tsao, Hisashi Kawai


【5】ProfilingAgent: Profiling-Guided Agentic Reasoning for Adaptive Model Optimization
标题:ProfilingAgent:用于自适应模型优化的分析引导式推理
链接:https://arxiv.org/abs/2509.05584

作者:fari, Aishwarya Sarkar, Mohiuddin Bilwal, Ali Jannesari
备注:13 pages, 3 figures, 5 tables, 1 algorithm


【6】Learning Tool-Aware Adaptive Compliant Control for Autonomous Regolith Excavation
标题:自主风化层挖掘的学习工具感知自适应合规控制
链接:https://arxiv.org/abs/2509.05475

作者:sula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
备注:The source code is available at this https URL


【7】Robust and Adaptive Spectral Method for Representation Multi-Task Learning with Contamination
标题:具有污染的表示多任务学习的鲁棒自适应谱方法
链接:https://arxiv.org/abs/2509.06575

作者:g, Yang Feng, Zhiliang Ying


【8】Minimax optimal transfer learning for high-dimensional additive regression
标题:多维加性回归的极小最优迁移学习
链接:https://arxiv.org/abs/2509.06308

作者:n Moon
备注:This is a draft version of the paper. All responsibilities are assigned to the first author


【9】MOSAIC: Minimax-Optimal Sparsity-Adaptive Inference for Change Points in Dynamic Networks
标题:MOSAIC:动态网络中变化点的极小最优稀疏自适应推理
链接:https://arxiv.org/abs/2509.06303

作者:Fan, Jingyuan Liu, Jinchi Lv, Ao Sun
备注:110 pages, 4 figures


【10】Predicting Brain Morphogenesis via Physics-Transfer Learning
标题:通过物理迁移学习预测大脑形态发生
链接:https://arxiv.org/abs/2509.05305

作者:hao, Yicheng Song, Fan Xu, Zhiping Xu


强化学习(7篇)

【1】Reinforcement learning meets bioprocess control through behaviour cloning: Real-world deployment in an industrial photobioreactor
标题:强化学习通过行为克隆满足生物过程控制:在工业光生物反应器中的实际部署
链接:https://arxiv.org/abs/2509.06853

作者:il, Ehecatl Antonio Del Rio Chanona, José L. Guzmán, Manuel Berenguel


【2】Physics-informed Value Learner for Offline Goal-Conditioned Reinforcement Learning
标题:离线目标条件强化学习的了解身体的价值学习者
链接:https://arxiv.org/abs/2509.06782

作者:Giammarino, Ruiqi Ni, Ahmed H. Qureshi


【3】Toward a Metrology for Artificial Intelligence: Hidden-Rule Environments and Reinforcement Learning
标题:迈向人工智能的计量学:隐藏规则环境和强化学习
链接:https://arxiv.org/abs/2509.06213

作者:athew, Wentian Wang, Lazaros Gallos, Paul Kantor, Vladimir Menkov, Hao Wang


【4】Using Reinforcement Learning to Optimize the Global and Local Crossing Number
标题:使用强化学习优化全球和本地交叉数
链接:https://arxiv.org/abs/2509.06108

作者:d, Henry Förster, Stephen Kobourov, Robin Schukrafft, Markus Wallinger, Johannes Zink


【5】Learning to Construct Knowledge through Sparse Reference Selection with Reinforcement Learning
标题:通过强化学习通过稀疏引用选择来学习构建知识
链接:https://arxiv.org/abs/2509.05874

作者:in
备注:8 pages, 2 figures


【6】Reinforcement Learning with Anticipation: A Hierarchical Approach for Long-Horizon Tasks
标题:带预期的强化学习:长期任务的分层方法
链接:https://arxiv.org/abs/2509.05545

作者


【7】Reward function compression facilitates goal-dependent reinforcement learning
标题:奖励函数压缩促进目标相关强化学习
链接:https://arxiv.org/abs/2509.06810

作者:naro, Anne G. E. Collins


医学相关(7篇)

【1】Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
标题:演示:用于分子肿瘤委员会中患者汇总的医疗保健代理商演示器(HAO)
链接:https://arxiv.org/abs/2509.06602

作者:lla, Sam Preston, Hao Qiu, Leonardo Schettini, Wen-wai Yim, Mert Öz, Shrey Jain, Matthew P. Lungren, Thomas Osborne
备注:9 pages, 1 figure


【2】Causal Debiasing Medical Multimodal Representation Learning with Missing Modalities
标题:缺失模式的医学多模式表示学习的因果去偏
链接:https://arxiv.org/abs/2509.05615

作者: Zhu, Lianlong Sun, Yang Liu, Pengyi Jiang, Uma Srivatsa, Nipavan Chiamvimonvat, Vladimir Filkov
备注:Submitted to IEEE TKDE


【3】Advanced Brain Tumor Segmentation Using EMCAD: Efficient Multi-scale Convolutional Attention Decoding
标题:使用EMCAD的高级脑肿瘤分割:高效的多尺度卷积注意力解码
链接:https://arxiv.org/abs/2509.05431

作者:Uzor, Tania-Amanda Nkoyo Fredrick Eneye, Chukwuebuka Ijezue


【4】Unmasking COVID-19 Vulnerability in Nigeria: Mapping Risks Beyond Urban Hotspots
标题:揭露尼日利亚的COVID-19脆弱性:绘制城市热点以外的风险
链接:https://arxiv.org/abs/2509.05398

作者:fula, Blessed Madukoma
备注:8 pages, 6 figures. Submission to NeurIPS 2025 in preparation


【5】Handling imbalance and few-sample size in ML based Onion disease classification
标题:基于ML的洋葱病分类中处理不平衡和少样本量
链接:https://arxiv.org/abs/2509.05341

作者:Manoj Pal, Rajbabu Velmurugan
备注:6 pages, 8 figures


【6】Application of discrete Ricci curvature in pruning randomly wired neural networks: A case study with chest x-ray classification of COVID-19
标题:离散Ricci弯曲在修剪随机连线神经网络中的应用:COVID-19胸部X光分类的案例研究
链接:https://arxiv.org/abs/2509.05322

作者:Elumalai, Sudharsan Vijayaraghavan, Madhumita Mondal, Areejit Samal
备注:21 pages, 4 figures, 9 tables


【7】Impact of Labeling Inaccuracy and Image Noise on Tooth Segmentation in Panoramic Radiographs using Federated, Centralized and Local Learning
标题:标签不准确和图像噪音对使用联合、集中和本地学习的全景射线照片中牙齿分割的影响
链接:https://arxiv.org/abs/2509.06553

作者:reas Balle Rubak, Khuram Naveed, Sanyam Jain, Lukas Esterle, Alexandros Iosifidis, Ruben Pauwels


蒸馏|知识提取(1篇)

【1】QualityFM: a Multimodal Physiological Signal Foundation Model with Self-Distillation for Signal Quality Challenges in Critically Ill Patients
标题:Quality FM:一种具有自蒸馏功能的多模式生理信号基础模型,应对危重患者的信号质量挑战
链接:https://arxiv.org/abs/2509.06516

作者:Guo, Tao Chen, Manuela Ferrario
备注:11 pages, 5 figures, 7 tables


推荐(2篇)

【1】ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting
标题:ARIES:深度时间序列预测的关系评估和模型推荐
链接:https://arxiv.org/abs/2509.06060

作者: Yujie Li, Zezhi Shao, Chengqing Yu, Yisong Fu, Zhulin An, Yongjun Xu, Xueqi Cheng


【2】Calibrated Recommendations with Contextual Bandits
标题:针对背景盗贼的校准建议
链接:https://arxiv.org/abs/2509.05460

作者:jer, Himan Abdollahpouri, Sanket Gupta, Alexander Clare, Yuxiao Wen, Todd Wasson, Maria Dimakopoulou, Zahra Nazari, Kyle Kretschman, Mounia Lalmas
备注:Accepted at ACM RecSys '25, CONSEQUENCES workshop


聚类(1篇)

【1】Causal Clustering for Conditional Average Treatment Effects Estimation and Subgroup Discovery
标题:条件平均治疗效果估计和亚组发现的原因聚集
链接:https://arxiv.org/abs/2509.05775

作者:ng, Turgay Ayer, Shihao Yang
备注:Pre-print for camera ready version for IEEE EMBS BHI 2025


自动驾驶|车辆|车道检测等(1篇)

【1】Self-Driving Laboratory Optimizes the Lower Critical Solution Temperature of Thermoresponsive Polymers
标题:自动驾驶实验室优化温敏聚合物的下限临界溶液温度
链接:https://arxiv.org/abs/2509.05351

作者:, Renzheng Zhang, Tengfei Luo


点云|SLAM|雷达|激光|深度RGBD相关(1篇)

【1】LiDAR-BIND-T: Improving SLAM with Temporally Consistent Cross-Modal LiDAR Reconstruction
标题:LiDAR-BIND-T:通过时间一致的跨模式LiDART重建改善SLAM
链接:https://arxiv.org/abs/2509.05728

作者:emans, Ali Anwar, Jan Steckel, Siegfried Mercelis


推理|分析|理解|解释(9篇)

【1】Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
标题:推理模型中的测试时间缩放对于知识密集型任务还不有效
链接:https://arxiv.org/abs/2509.06861

作者:Zhao, Bryan Hooi, See-Kiong Ng
备注:20 pages, 4 figures, 6 tables


【2】RT-HCP: Dealing with Inference Delays and Sample Efficiency to Learn Directly on Robotic Platforms
标题:RT-HCP:处理推理延迟和样本效率以直接在机器人平台上学习
链接:https://arxiv.org/abs/2509.06714

作者:El Asri, Ibrahim Laiche, Clément Rambour, Olivier Sigaud, Nicolas Thome
备注:IROS 2025


【3】Small Vectors, Big Effects: A Mechanistic Study of RL-Induced Reasoning via Steering Vectors
标题:小载体,大效应:通过转向载体的RL诱导推理的机制研究
链接:https://arxiv.org/abs/2509.06608

作者:v Sinii, Nikita Balagansky, Yaroslav Aksenov, Vadim Kurochkin, Daniil Laptev, Gleb Gerasimov, Alexey Gorbatovski, Boris Shaposhnikov, Daniil Gavrilov
备注:Preprint


【4】An Explainable Framework for Particle Swarm Optimization using Landscape Analysis and Machine Learning
标题:使用景观分析和机器学习的粒子群优化的可解释框架
链接:https://arxiv.org/abs/2509.06272

作者:ta, Bapi Dutta, Anupam Yadav


【5】The Measure of Deception: An Analysis of Data Forging in Machine Unlearning
标题:欺骗的衡量:机器取消学习中数据伪造的分析
链接:https://arxiv.org/abs/2509.05865

作者:ixit, Yuan Hui, Rayan Saab


【6】MambaLite-Micro: Memory-Optimized Mamba Inference on MCUs
标题:MambaLite-Micro:基于MCU的内存优化Mamba推理
链接:https://arxiv.org/abs/2509.05488

作者:u, Junxi Xia, Weisi Yang, Yueyuan Sui, Stephen Xia
备注:4 pages, 1 figures


【7】Multi-EuP: The Multilingual European Parliament Dataset for Analysis of Bias in Information Retrieval
标题:Multi-EuP:用于信息检索偏差分析的多语言欧洲议会数据集
链接:https://arxiv.org/abs/2311.01870

作者:ng, Timothy Baldwin, Trevor Cohn
备注:Accepted at The 3rd Multilingual Representation Learning (MRL)   Workshop (co-located with EMNLP 2023)


【8】Robust Analysis for Resilient AI System
标题:弹性人工智能系统的稳健分析
链接:https://arxiv.org/abs/2509.06172

作者:Ran Jin, Lulu Kang
备注:10 pages, 3 figures


【9】Robust variational neural posterior estimation for simulation-based inference
标题:基于模拟推理的鲁棒变分神经后验估计
链接:https://arxiv.org/abs/2509.05724

作者:'Callaghan, Kaisey S. Mandel, Gerry Gilmore
备注:Main text: 16 pages, 6 figures


检测相关(9篇)

【1】Tackling the Noisy Elephant in the Room: Label Noise-robust Out-of-Distribution Detection via Loss Correction and Low-rank Decomposition
标题:解决房间里的吵闹大象:通过丢失纠正和低等级分解进行标签噪音稳健的分布外检测
链接:https://arxiv.org/abs/2509.06918

作者: Azad, Shahana Ibrahim


【2】Hypergraph-Guided Regex Filter Synthesis for Event-Based Anomaly Detection
标题:用于基于事件的异常检测的超图引导Regex过滤器合成
链接:https://arxiv.org/abs/2509.06911

作者: Ferreira, Victor Nicolet, Luan Pham, Joey Dodds, Daniel Kroening, Ines Lynce, Ruben Martins


【3】Detection of trade in products derived from threatened species using machine learning and a smartphone
标题:使用机器学习和智能手机检测受威胁物种产品贸易
链接:https://arxiv.org/abs/2509.06585

作者:lkarni, WU Hanqin, Enrico Di Minin


【4】CAPMix: Robust Time Series Anomaly Detection Based on Abnormal Assumptions with Dual-Space Mixup
标题:CAPMix:基于双空间混合异常假设的鲁棒时间序列异常检测
链接:https://arxiv.org/abs/2509.06419

作者:u, Rui Wang, Tiejun Wang, Renyu Yang, Shiru Chen, Jie Sun, Tianyu Wo, Xudong Liu


【5】Near Real-Time Dust Aerosol Detection with 3D Convolutional Neural Networks on MODIS Data
标题:利用3D卷积神经网络在TLR数据上近实时检测尘埃气溶胶
链接:https://arxiv.org/abs/2509.05887

作者:es, Patrick Moorhead, Jayden Ferguson, Omar Darwish, Conner Stallman, Pablo Rivas, Paapa Quansah
备注:29th International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV'25)


【6】DCV-ROOD Evaluation Framework: Dual Cross-Validation for Robust Out-of-Distribution Detection
标题:DCV-ROOD评估框架:用于稳健的分布外检测的双重交叉验证
链接:https://arxiv.org/abs/2509.05778

作者:rrea-Castaño, Nicolás Segura-Kunsagi, Juan Luis Suárez-Díaz, Rosana Montes, Francisco Herrera
备注:20 pages and appendix


【7】VILOD: A Visual Interactive Labeling Tool for Object Detection
标题:VILOD:用于对象检测的视觉交互标签工具
链接:https://arxiv.org/abs/2509.05317

作者
备注:Master's project


【8】Robustness and accuracy of mean opinion scores with hard and soft outlier detection
标题:具有硬异常值和软异常值检测的平均意见分数的稳健性和准确性
链接:https://arxiv.org/abs/2509.06554

作者:aupe, Tim Bleile
备注:Accepted for 17th International Conference on Quality of Multimedia Experience (QoMEX'25), September 2025, Madrid, Spain


【9】On detection probabilities of link invariants
标题:关于链接不变量的检测概率
链接:https://arxiv.org/abs/2509.05574

作者:banne, Daniel Tubbenhauer, Pedro Vaz, Victor L. Zhang
备注:16 pages, many figures, comments welcome


分类|识别(10篇)

【1】AxelSMOTE: An Agent-Based Oversampling Algorithm for Imbalanced Classification
标题:AxelSMOTE:一种基于代理的不平衡分类过采样算法
链接:https://arxiv.org/abs/2509.06875

作者:ishanthan, Asela Hevapathige


【2】Improved Classification of Nitrogen Stress Severity in Plants Under Combined Stress Conditions Using Spatio-Temporal Deep Learning Framework
标题:使用时空深度学习框架改进组合胁迫条件下植物氮胁迫严重程度的分类
链接:https://arxiv.org/abs/2509.06625

作者:mar Patra
备注:13 pages, 8 figures, 7 Tables


【3】Signal-Based Malware Classification Using 1D CNNs
标题:基于信号的1D CNN恶意软件分类
链接:https://arxiv.org/abs/2509.06548

作者:ie, Hanan Hindy, Ivan Andonovic, Christos Tachtatzis, Robert Atkinson
备注:Accepted for publication in Springer Cybersecurity (2025)


【4】MRD-LiNet: A Novel Lightweight Hybrid CNN with Gradient-Guided Unlearning for Improved Drought Stress Identification
标题:MRD-LiNet:一种新的轻量级混合CNN,具有主动引导的学习,用于改进干旱胁迫识别
链接:https://arxiv.org/abs/2509.06367

作者:mar Patra, Lingaraj Sahoo
备注:11 pages, 6 Figures, 3 Tables


【5】Exploring approaches to computational representation and classification of user-generated meal logs
标题:探索用户生成的膳食日志的计算表示和分类方法
链接:https://arxiv.org/abs/2509.06330

作者:u, Adit Anand, Pooja M. Desai, Iñigo Urteaga, Lena Mamykina


【6】Enhancing Low-Altitude Airspace Security: MLLM-Enabled UAV Intent Recognition
标题:增强低空空域安全:支持MLLM的无人机意图识别
链接:https://arxiv.org/abs/2509.06312

作者:ei, Tianhao Liang, Yuqi Ping, Xinglin Chen, Longyu Zhou, Junwei Wu, Xiyuan Zhang, Huahao Ding, Xingjian Zhang, Weijie Yuan, Tingting Zhang, Qinyu Zhang
备注:The paper has been submitted to IEEE Internet of Things Magazine


【7】Ensemble of Precision-Recall Curve (PRC) Classification Trees with Autoencoders
标题:使用自动编码器集成精确召回曲线(PRC)分类树
链接:https://arxiv.org/abs/2509.05766

作者:o, Wei Zhu


【8】Systematic Evaluation of Multi-modal Approaches to Complex Player Profile Classification
标题:复杂球员概况分类的多模式方法的系统评估
链接:https://arxiv.org/abs/2509.05624

作者:race, Terence Soule


【9】Quantum spatial best-arm identification via quantum walks
标题:通过量子行走进行量子空间最佳臂识别
链接:https://arxiv.org/abs/2509.05890

作者:magami, Etsuo Segawa, Takatomo Mihana, André Röhm, Atsushi Uchida, Ryoichi Horisaki
备注:15 pages, 8 figures


【10】Risk-averse Fair Multi-class Classification
标题:规避风险公平多类别分类
链接:https://arxiv.org/abs/2509.05771

作者:entcheva, Xiangyu Tian


表征(2篇)

【1】MSRFormer: Road Network Representation Learning using Multi-scale Feature Fusion of Heterogeneous Spatial Interactions
标题:MSRFormer:基于异构空间交互的多尺度特征融合的道路网络表示学习
链接:https://arxiv.org/abs/2509.05685

作者:, Jiahui Wu, Li Fang, Hongchao Fan, Bianying Zhang, Huijie Zhao, Guangyi Yang, Rui Xin, Xiong You


【2】PLanTS: Periodicity-aware Latent-state Representation Learning for Multivariate Time Series
标题:PLanTS:多元时间序列的周期感知潜在状态表示学习
链接:https://arxiv.org/abs/2509.05478

作者: Xiao Wang, Chi Zhang


3D|3D重建等相关(1篇)

【1】Learning in ImaginationLand: Omnidirectional Policies through 3D Generative Models (OP-Gen)
标题:ImaginationLand学习:通过3D生成模型实现全方位政策(OP-Gen)
链接:https://arxiv.org/abs/2509.06191

作者:, Edward Johns
备注:Project webpage with robot videos: this https URL


编码器(1篇)

【1】mmBERT: A Modern Multilingual Encoder with Annealed Language Learning
标题:mmBERT:具有Annealed语言学习的现代多语言编码器
链接:https://arxiv.org/abs/2509.06888

作者:ne, Orion Weller, William Fleshman, Eugene Yang, Dawn Lawrie, Benjamin Van Durme


优化|敛散性(9篇)

【1】COMPACT: Common-token Optimized Model Pruning Across Channels and Tokens
标题:COMACT:跨渠道和代币修剪的公共代币优化模型
链接:https://arxiv.org/abs/2509.06836

作者:ek, Wenpeng Yin


【2】Nested Optimal Transport Distances
标题:嵌套最佳运输距离
链接:https://arxiv.org/abs/2509.06702

作者:torno, Songyan Hou
备注:7 pages, 3 figures


【3】Learning Optimal Defender Strategies for CAGE-2 using a POMDP Model
标题:使用POMDP模型学习CAGE-2的最佳防御策略
链接:https://arxiv.org/abs/2509.06539

作者:e, Rolf Stadler
备注:The paper is has been accepted for the 21st International Conference on Network and Service Management (CNSM-2025). The final version will be published in the conference proceedings


【4】PLRV-O: Advancing Differentially Private Deep Learning via Privacy Loss Random Variable Optimization
标题:PLRV-O:通过隐私损失随机变量优化推进差异隐私深度学习
链接:https://arxiv.org/abs/2509.06264

作者: Nicholas Stout, Meisam Mohammady, Han Wang, Ayesha Samreen, Christopher J Quinn, Yan Yan, Ashish Kundu, Yuan Hong
备注:Source code is available at this https URL. This is the full version of the paper to appear in CCS'25


【5】Smoothed Online Optimization for Target Tracking: Robust and Learning-Augmented Algorithms
标题:目标跟踪的平滑在线优化:鲁棒和学习增强算法
链接:https://arxiv.org/abs/2509.05930

作者:li, Mahsa Sahebdel, Qingsong Liu, Mohammad Hajiesmaili, Ramesh K. Sitaraman
备注:10 pages, 14 pages appendix


【6】Simple Optimizers for Convex Aligned Multi-Objective Optimization
标题:用于凸对齐多目标优化的简单优化器
链接:https://arxiv.org/abs/2509.05811

作者:u, Karen Ullrich, Yonathan Efroni


【7】OptiProxy-NAS: Optimization Proxy based End-to-End Neural Architecture Search
标题:OptProxy-NAS:基于优化代理的端到端神经架构搜索
链接:https://arxiv.org/abs/2509.05656

作者:u Cui, Tuo Shi, Ke Li


【8】STL-based Optimization of Biomolecular Neural Networks for Regression and Control
标题:基于STL的生物分子神经网络回归和控制优化
链接:https://arxiv.org/abs/2509.05481

作者:nques-Tost, Hanna Krasowski, Murat Arcak, Ron Weiss, Calin Belta


【9】Data-driven solar forecasting enables near-optimal economic decisions
标题:数据驱动的太阳能预测实现近乎最优的经济决策
链接:https://arxiv.org/abs/2509.06925

作者:Dai, Minghao Yin, Xuanhong Chen, Alberto Carpentieri, Jussi Leinonen, Boris Bonev, Chengzhe Zhong, Thorsten Kurth, Jingan Sun, Ram Cherukuri, Yuzhou Zhang, Ruihua Zhang, Farah Hariri, Xiaodong Ding, Chuanxiang Zhu, Dake Zhang, Yaodan Cui, Yuxi Lu, Yue Song, Bin He, Jie Chen, Yixin Zhu, Chenheng Xu, Maofeng Liu, Zeyi Niu, Wanpeng Qi, Xu Shan, Siyuan Xian, Ning Lin, Kairui Feng
备注:Main text ~12 pages, 4 figures, 0 tables


预测|估计(9篇)

【1】Video-Based MPAA Rating Prediction: An Attention-Driven Hybrid Architecture Using Contrastive Learning
标题:基于视频的MPA评级预测:使用对比学习的注意力驱动混合架构
链接:https://arxiv.org/abs/2509.06826

作者:gi, Nourash Azmine Chowdhury, Muhammad Rafsan Kabir, Mohammad Ashrafuzzaman Khan
备注:12 pages, 9 figures


【2】CAME-AB: Cross-Modality Attention with Mixture-of-Experts for Antibody Binding Site Prediction
标题:CAME-AB:抗体结合位点预测专家混合的跨模式关注
链接:https://arxiv.org/abs/2509.06465

作者:Li, Jiahao Ma, Zhanpeng Shi, Fanming Jin, Ye-Fan Hu, Jian-Dong Huang


【3】Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting
标题:超越服务前视野:注入在职行为以改善财务风险预测
链接:https://arxiv.org/abs/2509.06385

作者:u, Zhiyu Guo, Zhiyuan Ji, Yueguo Chen, Yateng Tang, Yunhai Wang, Xuehao Zheng, Xiang Ao
备注:Accepted to IEEE ICDM 2025


【4】Grasp-MPC: Closed-Loop Visual Grasping via Value-Guided Model Predictive Control
标题:Grasp-MPC:通过价值引导模型预测控制的闭环视觉抓取
链接:https://arxiv.org/abs/2509.06201

作者:a, Adithyavairavan Murali, Ajay Mandlekar, Clemens Eppner, Ingmar Posner, Balakumar Sundaralingam
备注:14 pages, 17 figures


【5】Unified Interaction Foundational Model (UIFM) for Predicting Complex User and System Behavior
标题:用于预测复杂用户和系统行为的统一交互基础模型(UIFM)
链接:https://arxiv.org/abs/2509.06025

作者:thiraj, Subhash Talluri


【6】Select, then Balance: A Plug-and-Play Framework for Exogenous-Aware Spatio-Temporal Forecasting
标题:选择,然后选择平衡:外部感知时空预测的即插即用框架
链接:https://arxiv.org/abs/2509.05779

作者: Yuqian Wu, Yuanshao Zhu, Xixuan Hao, Shiyu Wang, Yuxuan Liang
备注:16 pages, 11 figures


【7】Real-E: A Foundation Benchmark for Advancing Robust and Generalizable Electricity Forecasting
标题:Real-E:推进稳健和可推广电力预测的基础基准
链接:https://arxiv.org/abs/2509.05768

作者:, Yue Wang, Zhenyi Zhu, Zhanbo Huang, Sebastian Pütz, Benjamin Schäfer, Tobais Käfer, Michael Färber
备注:4 pages, CIKM 2025


【8】Neural ARFIMA model for forecasting BRIC exchange rates with long memory under oil shocks and policy uncertainties
标题:石油冲击和政策不确定性下预测金砖四国汇率的长记忆神经ARFIMA模型
链接:https://arxiv.org/abs/2509.06697

作者:hakraborty, Donia Besher, Madhurima Panja, Shovon Sengupta


【9】Topological Regularization for Force Prediction in Active Particle Suspension with EGNN and Persistent Homology
标题:基于EGNN和持续同调的活性颗粒悬浮液力预测的Topology regulation
链接:https://arxiv.org/abs/2509.06574

作者:emi, Amirhossein Ahmadkhan Kordbacheh


其他神经网络|深度学习|模型|建模(37篇)

【1】Deep Reactive Policy: Learning Reactive Manipulator Motion Planning for Dynamic Environments
标题:深度反应策略:学习动态环境的反应式机械手运动规划
链接:https://arxiv.org/abs/2509.06953

作者:ng, Jason Jingzhou Liu, Yulong Li, Youssef Khaky, Kenneth Shaw, Deepak Pathak
备注:Website at \url{this http URL}


【2】Learning words in groups: fusion algebras, tensor ranks and grokking
标题:分组学习单词:融合代数、张量等级和Grokking
链接:https://arxiv.org/abs/2509.06931

作者:man, Oren Louidor, Ran Tessler


【3】Concolic Testing on Individual Fairness of Neural Network Models
标题:神经网络模型个体公平性的协和检验
链接:https://arxiv.org/abs/2509.06864

作者:ang, Chih-Duo Hong, Fang Yu


【4】Curia: A Multi-Modal Foundation Model for Radiology
标题:Curia:放射学多模式基础模型
链接:https://arxiv.org/abs/2509.06830

作者:Dancette, Julien Khlaut, Antoine Saporta, Helene Philippe, Elodie Ferreres, Baptiste Callard, Théo Danielou, Léo Alberge, Léo Machado, Daniel Tordjman, Julie Dupuis, Korentin Le Floch, Jean Du Terrail, Mariam Moshiri, Laurent Dercle, Tom Boeken, Jules Gregory, Maxime Ronot, François Legou, Pascal Roux, Marc Sapoval, Pierre Manceron, Paul Hérent


【5】Dato: A Task-Based Programming Model for Dataflow Accelerators
标题:Dato:数据流加速器的基于任务的编程模型
链接:https://arxiv.org/abs/2509.06794

作者:ng, Hongzheng Chen, Niansong Zhang, Jiajie Li, Han Meng, Adrian Liu, Zhiru Zhang


【6】When Secure Isn't: Assessing the Security of Machine Learning Model Sharing
标题:当不安全时:评估机器学习模型共享的安全性
链接:https://arxiv.org/abs/2509.06703

作者:Digregorio, Marco Di Gennaro, Stefano Zanero, Stefano Longari, Michele Carminati


【7】Probabilistic Modeling of Latent Agentic Substructures in Deep Neural Networks
标题:深度神经网络中潜在统计子结构的概率建模
链接:https://arxiv.org/abs/2509.06701

作者: Lee, Risi Kondor, Richard Ngo


【8】Barycentric Neural Networks and Length-Weighted Persistent Entropy Loss: A Green Geometric and Topological Framework for Function Approximation
标题:以重心为中心的神经网络和长度加权持续性熵损失:函数逼近的绿色几何和布局框架
链接:https://arxiv.org/abs/2509.06694

作者:scano-Duran, Rocio Gonzalez-Diaz, Miguel A. Gutiérrez-Naranjo


【9】Knowledge-Guided Machine Learning for Stabilizing Near-Shortest Path Routing
标题:稳定近最短路径路由的知识引导机器学习
链接:https://arxiv.org/abs/2509.06640

作者:hen, Sen Lin, Anish Arora


【10】BEAM: Brainwave Empathy Assessment Model for Early Childhood
标题:BEAM:幼儿脑电波同理心评估模型
链接:https://arxiv.org/abs/2509.06620

作者: Gaofeng Wu, Kaidong Wang, Zihao Zhu, Xiaoshu Luo, Yan Liang, Feiyu Quan, Ruoxi Wu, Xianghui Huang, Han Zhang


【11】Information-Theoretic Bounds and Task-Centric Learning Complexity for Real-World Dynamic Nonlinear Systems
标题:现实世界动态非线性系统的信息论界和任务中心学习复杂性
链接:https://arxiv.org/abs/2509.06599

作者:h Krishna Chaitanya Bulusu, Mikko Sillanpää
备注:15 pages, 1 figure, 2 photographs


【12】On the Reproducibility of "FairCLIP: Harnessing Fairness in Vision-Language Learning''
链接:https://arxiv.org/abs/2509.06535

作者: Bakker, Stan Fris, Angela Madelon Bernardy, Stan Deutekom


【13】NeuroDeX: Unlocking Diverse Support in Decompiling Deep Neural Network Executables
标题:NeuroDeX:解锁反编译深度神经网络可执行文件的多元化支持
链接:https://arxiv.org/abs/2509.06402

作者: Guozhu Meng, Mingyang Sun, Yanzhong Wang, Kun Sun, Hailong Chang, Yuekang Li


【14】A Multi-Modal Deep Learning Framework for Colorectal Pathology Diagnosis: Integrating Histological and Colonoscopy Data in a Pilot Study
标题:用于结直肠病理诊断的多模式深度学习框架:在试点研究中集成组织学和结肠镜检查数据
链接:https://arxiv.org/abs/2509.06351

作者:amesh, Ritvik Koneru


【15】Modeling shopper interest broadness with entropy-driven dialogue policy in the context of arbitrarily large product catalogs
标题:在任意大的产品目录的背景下,利用信息驱动的对话政策对购物者的兴趣广度进行建模
链接:https://arxiv.org/abs/2509.06185

作者:boui, Issa Memari


【16】Tracking daily paths in home contexts with RSSI fingerprinting based on UWB through deep learning models
标题:通过深度学习模型,利用基于UWB的RTI指纹识别跟踪家庭环境中的日常路径
链接:https://arxiv.org/abs/2509.06161

作者:lo-Rodríguez, Juan Carlos Valera, Jesús Peral, David Gil, Javier Medina-Quero
备注:25 pages, 14 figures


【17】Teaching Precommitted Agents: Model-Free Policy Evaluation and Control in Quasi-Hyperbolic Discounted MDPs
标题:教授预先承诺的代理:准双曲折扣MDP中的无模型政策评估和控制
链接:https://arxiv.org/abs/2509.06094

作者:ar


【18】A Surrogate model for High Temperature Superconducting Magnets to Predict Current Distribution with Neural Network
标题:用神经网络预测电流分布的高温超导磁铁替代模型
链接:https://arxiv.org/abs/2509.06067

作者:iao, Peng Song, Yulong Liu, Cedric Korte, Ziyang Xu, Jiale Gao, Jiaqi Lu, Haoyang Nie, Qiantong Deng, Timing Qu


【19】A novel biomass fluidized bed gasification model coupled with machine learning and CFD simulation
标题:结合机器学习和计算流体模拟的新型生物质沸腾床气化模型
链接:https://arxiv.org/abs/2509.06056

作者


【20】BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
标题:BranchGRPO:扩散模型中具有结构化分支的稳定有效GRPO
链接:https://arxiv.org/abs/2509.06040

作者:, Yikai Wang, Yuying Zhu, Zhongyu Zhao, Ming Lu, Qi She, Shanghang Zhang
备注:12 pages, 6 figures


【21】Code2MCP: A Multi-Agent Framework for Automated Transformation of Code Repositories into Model Context Protocol Services
标题:Code2MCP:一个多Agent框架,用于代码仓库到模型上下文协议服务的自动转换
链接:https://arxiv.org/abs/2509.05941

作者:Ouyang, Ling Yue, Shimin Di, Libin Zheng, Shaowu Pan, Min-Ling Zhang


【22】Data-Driven Stochastic Modeling Using Autoregressive Sequence Models: Translating Event Tables to Queueing Dynamics
标题:使用自回归序列模型的数据驱动随机建模:将事件表转化为排队动力学
链接:https://arxiv.org/abs/2509.05839

作者:tal, Shunri Zheng, Jing Dong, Hongseok Namkoong


【23】time2time: Causal Intervention in Hidden States to Simulate Rare Events in Time Series Foundation Models
标题:time 2time:在隐藏状态中进行因果干预以模拟时间序列基础模型中的罕见事件
链接:https://arxiv.org/abs/2509.05801

作者:anyal, Aaryan Nagpal, Dhruv Kumar, Murari Mandal, Saurabh Deshpande


【24】Offline vs. Online Learning in Model-based RL: Lessons for Data Collection Strategies
标题:基于模型的RL中的离线与在线学习:数据收集策略的课程
链接:https://arxiv.org/abs/2509.05735

作者:n, Ji Shi, Cansu Sancaktar, Jonas Frey, Georg Martius
备注:Accepted at Reinforcement Learning Conference (RLC 2025); Code available at: this https URL


【25】Simulation Priors for Data-Efficient Deep Learning
标题:数据高效深度学习的模拟先验
链接:https://arxiv.org/abs/2509.05732

作者:even, Bhavya Sukhija, Jonas Rothfuss, Stelian Coros, Florian Dörfler, Andreas Krause


【26】Distributed Deep Learning using Stochastic Gradient Staleness
标题:使用随机梯度停滞的分布式深度学习
链接:https://arxiv.org/abs/2509.05679

作者:g Pham, Hyo-Sung Ahn


【27】DreamPRM-1.5: Unlocking the Potential of Each Instance for Multimodal Process Reward Model Training
标题:DreamPRM-1.5:释放每个实例用于多模式流程奖励模型训练的潜力
链接:https://arxiv.org/abs/2509.05542

作者:engtao Xie


【28】Prior Distribution and Model Confidence
标题:先验分布和模型置信度
链接:https://arxiv.org/abs/2509.05485

作者:zanskii, Artem Kasianov
备注:10 pages,4 tables, 5 images


【29】Long-Horizon Visual Imitation Learning via Plan and Code Reflection
标题:通过计划和代码反思进行长期视觉模仿学习
链接:https://arxiv.org/abs/2509.05368

作者:, Chenrui Shi, Qi Chen, Yuwei Wu, Zhi Gao, Xintong Zhang, Rui Gao, Kun Wu, Yunde Jia
备注:9 pages, 4 figures. Submitted to AAAI 2026


【30】Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
标题:通过基于模型的端到端学习实现连续控制的尖峰神经网络
链接:https://arxiv.org/abs/2509.05356

作者:ebotter, Pablo Lanillos, Marcel van Gerven, Serge Thill


【31】Sequential Least-Squares Estimators with Fast Randomized Sketching for Linear Statistical Models
标题:线性统计模型的快速随机绘制顺序最小平方估计器
链接:https://arxiv.org/abs/2509.06856

作者:hen, Xi Yang


【32】Green Learning for STAR-RIS mmWave Systems with Implicit CSI
标题:具有隐式SI的STAR-RIS毫米波系统的绿色学习
链接:https://arxiv.org/abs/2509.06820

作者: Huang, Po-Heng Chou, Wan-Jen Huang, Walid Saad, C.-C. Jay Kuo
备注:6 pages, 4 figures, 2 tables, accepted by 2025 IEEE Globecom


【33】Repeating vs. Non-Repeating FRBs: A Deep Learning Approach To Morphological Characterization
标题:重复与非重复FRB:形态学特征的深度学习方法
链接:https://arxiv.org/abs/2509.06208

作者:arel, Emmanuel Fonseca, Charanjot Brar, Afrokk Khan, Lluis Mas-Ribas, Swarali Shivraj Patil, Paul Scholz, Seth Robert Siegel, David C. Stenning
备注:26 pages, 17 figures, submitted to ApJ


【34】Machine learning magnetism from simple global descriptors
标题:来自简单全局描述符的机器学习吸引力
链接:https://arxiv.org/abs/2509.05909

作者:Fahmy
备注:Main Text: 9 pages + 10 Figures & 3 Supplementary Tables


【35】Volatility Modeling via EWMA-Driven Time-Dependent Hurst Parameters
标题:通过EGMA驱动的时间相关Hurst参数进行波动率建模
链接:https://arxiv.org/abs/2509.05820

作者:thipatla
备注:9 pages total


【36】Hybrid Fourier Neural Operator-Plasma Fluid Model for Fast and Accurate Multiscale Simulations of High Power Microwave Breakdown
标题:混合傅里叶神经操作器-等离子体流体模型用于高功率微波击穿的快速准确多尺度模拟
链接:https://arxiv.org/abs/2509.05799

作者:ya, Pratik Ghosh, Ajeya Mandikal, Shivam Gandha, Bhaskar Chaudhury


【37】Causal Multi-fidelity Surrogate Forward and Inverse Models for ICF Implosions
标题:ICF内爆的因果多保真度替代正向和逆模型
链接:https://arxiv.org/abs/2509.05510

作者:Maltba, Ben S. Southworth, Jeffrey R. Haack, Marc L. Klasky


其他(42篇)

【1】Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
标题:将全扩散轨迹与细粒度人类偏好直接对齐
链接:https://arxiv.org/abs/2509.06942

作者:Shen, Zhimin Li, Zhantao Yang, Shiyi Zhang, Yingfang Zhang, Donghao Li, Chunyu Wang, Qinglin Lu, Yansong Tang
备注:15 pages


【2】Neutron Reflectometry by Gradient Descent
标题:梯度下降法的中子反射测量
链接:https://arxiv.org/abs/2509.06924

作者:mpneys, Andrew J.Parnell, Philipp Gutfreund, Maximilian W. A. Skoda, . Patrick A. Fairclough, Timothy J.Rogers, Stephanie L.Burg


【3】Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents
标题:Paper2Agent:将研究论文重新构想为交互式且可靠的人工智能代理
链接:https://arxiv.org/abs/2509.06917

作者:Miao, Joe R. Davis, Jonathan K. Pritchard, James Zou


【4】Not All Samples Are Equal: Quantifying Instance-level Difficulty in Targeted Data Poisoning
标题:并非所有样本都是相等的:量化目标数据中毒中的实例级难度
链接:https://arxiv.org/abs/2509.06896

作者:u, Yiwei Lu, Yihan Wang, Matthew Y.R. Yang, Zuoqiu Liu, Gautam Kamath, Yaoliang Yu


【5】floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
标题:floq:通过基于价值的RL中的缩放计算的流匹配训练批评者
链接:https://arxiv.org/abs/2509.06863

作者:rawalla, Michal Nauman, Khush Agarwal, Aviral Kumar


【6】ToonOut: Fine-tuned Background-Removal for Anime Characters
标题:ToonOut:微调背景删除动漫人物
链接:https://arxiv.org/abs/2509.06839

作者:ratori, Joël Seytre


【7】UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward
标题:UMO:通过匹配奖励扩展图像定制的多身份一致性
链接:https://arxiv.org/abs/2509.06818

作者:eng, Wenxu Wu, Shaojin Wu, Mengqi Huang, Fei Ding, Qian He
备注:Project page: this https URL Code and model: this https URL


【8】\texttt{R$^\textbf{2}$AI}: Towards Resistant and Resilient AI in an Evolving World
标题: extttt {R$# extBF{2}$AI}:在不断发展的世界中迈向具有抵抗力和弹性的人工智能
链接:https://arxiv.org/abs/2509.06786

作者:un, Xiang Wang, Jie Fu, Chaochao Lu, Bowen Zhou


【9】AI for Scientific Discovery is a Social Problem
标题:人工智能用于科学发现是一个社会问题
链接:https://arxiv.org/abs/2509.06580

作者:hanning, Avijit Ghosh


【10】Approximating Condorcet Ordering for Vector-valued Mathematical Morphology
标题:向量数学形态学的康多塞逼近排序
链接:https://arxiv.org/abs/2509.06577

作者:uardo Valle, Santiago Velasco-Forero, Joao Batista Florindo, Gustavo Jesus Angulo
备注:Submitted to the 4th International Conference on Discrete Geometry and Mathematical Morphology (DGMM 2025)


【11】Tackling Device Data Distribution Real-time Shift via Prototype-based Parameter Editing
标题:基于原型的参数编辑解决设备数据分布实时偏移
链接:https://arxiv.org/abs/2509.06552

作者: Wenqiao Zhang, Kairui Fu, Qi Tian, Shengyu Zhang, Jiajie Su, Jingyuan Chen, Kun Kuang, Fei Wu
备注:Published on MM'25: Proceedings of the 33rd ACM International Conference on Multimedia


【12】A machine-learned expression for the excess Gibbs energy
标题:超额吉布斯能量的机器学习表达
链接:https://arxiv.org/abs/2509.06484

作者:fmann, Thomas Specht, Quirin Göttl, Jakob Burger, Stephan Mandt, Hans Hasse, Fabian Jirasek
备注:18 pages, 3 figures


【13】Variational Garrote for Statistical Physics-based Sparse and Robust Variable Selection
标题:基于统计物理的稀疏稳健变量选择变分绞喉算法
链接:https://arxiv.org/abs/2509.06383

作者: Soh, Dongha Lee, Vipul Periwal, Junghyo Jo
备注:11 pages, 4 figures


【14】Breaking SafetyCore: Exploring the Risks of On-Device AI Deployment
标题:打破SafetyCore:探索设备上AI部署的风险
链接:https://arxiv.org/abs/2509.06371

作者:yomard, Mathis Mauvisseau, Marie Paindavoine


【15】A data-driven discretized CS:GO simulation environment to facilitate strategic multi-agent planning research
标题:数据驱动的离散化CS:GO模拟环境,促进战略多智能体规划研究
链接:https://arxiv.org/abs/2509.06355

作者:ng, Volkan Ustun, Chris McGroarty
备注:Accepted at the Winter Simulation Conference 2025, December, Seattle USA


【16】Embedding Poisoning: Bypassing Safety Alignment via Embedding Semantic Shift
标题:嵌入中毒:通过嵌入语义转变来实现安全一致
链接:https://arxiv.org/abs/2509.06338

作者:n, Zhibo Zhang, Yuxi Li, Guangdong Bai, Wang Kailong
备注:16 pages,9 figures


【17】Evaluating the Efficiency of Latent Spaces via the Coupling-Matrix
标题:通过耦合矩阵评估潜在空间的效率
链接:https://arxiv.org/abs/2509.06314

作者:n Yavuz, Berrin Yanikoglu


【18】LoaQ: Layer-wise Output Approximation Quantization
标题:LoaQ:逐层输出逼近量化
链接:https://arxiv.org/abs/2509.06297

作者:iaojun Wan
备注:7 pages, under review


【19】IPR: Intelligent Prompt Routing with User-Controlled Quality-Cost Trade-offs
标题:IPR:具有用户控制质量成本权衡的智能提示路由
链接:https://arxiv.org/abs/2509.06274

作者:ng, Zhichao Xu, Xian Wu, Kang Zhou, Sheng Guan, Yueyan Chen, Ninad Kulkarni, Yun Zhou, Balasubramaniam Srinivasan, Haibo Ding, Lin Lee Cheong


【20】UrbanMIMOMap: A Ray-Traced MIMO CSI Dataset with Precoding-Aware Maps and Benchmarks
标题:UrbanMIMOMap:一个带有预编码感知地图和基准的光线跟踪MIMO CSI数据集
链接:https://arxiv.org/abs/2509.06270

作者:Jia, Xiucheng Wang, Nan Cheng, Ruijin Sun, Changle Li
备注:Accepted to IEEE Global Communications Conference (GLOBECOM) 2025


【21】Exploring Urban Factors with Autoencoders: Relationship Between Static and Dynamic Features
标题:用自动编码器探索城市因素:静态和动态特征之间的关系
链接:https://arxiv.org/abs/2509.06167

作者:cco, Waqar Hassan, Karelia Salinas, Vladimir Molchanov, Luis G. Nonato


【22】An Improved Template for Approximate Computing
标题:一种改进的逼近计算模板
链接:https://arxiv.org/abs/2509.06162

作者 :ipour, F. Costa, M. Biasion, R. Otoni, G. A. Constantinides, L. Pozzi
备注:4 pages, 5 figures


【23】If generative AI is the answer, what is the question?
标题:如果生成性人工智能是答案,那么问题是什么?
链接:https://arxiv.org/abs/2509.06120

作者:ari
备注:To appear as a book chapter in a Springer book titled "Statistical Foundations and Applications of Artificial Intelligence, Machine Learning and Deep Learning" and edited by S. Ejaz Ahmed, Pierre Alquier, Yi Li, Shuangge Ma


【24】Khana: A Comprehensive Indian Cuisine Dataset
标题:Khana:全面的印度美食数据集
链接:https://arxiv.org/abs/2509.06006

作者:bhu


【25】Benchmarking Robust Aggregation in Decentralized Gradient Marketplaces
标题:在去中心化梯度市场中对稳健聚合进行基准
链接:https://arxiv.org/abs/2509.05833

作者:, Sainyam Galhotra, Shagufta Mehnaz


【26】InterAct: A Large-Scale Dataset of Dynamic, Expressive and Interactive Activities between Two People in Daily Scenarios
标题:InterAct:日常场景中两个人之间动态、表达和互动活动的大规模数据集
链接:https://arxiv.org/abs/2509.05747

作者:inghao Huang, Dafei Qin, Mingyi Shi, Wangpok Tse, Wei Liu, Junichi Yamagishi, Taku Komura
备注:The first two authors contributed equally to this work


【27】Morphological Perceptron with Competitive Layer: Training Using Convex-Concave Procedure
标题:具有竞争层的形态感知器:使用凹凸程序进行训练
链接:https://arxiv.org/abs/2509.05697

作者:a, Marcos Eduardo Valle
备注:Submitted to the 4th International Conference on Discrete Geometry and Mathematical Morphology (DGMM 2025)


【28】Audits Under Resource, Data, and Access Constraints: Scaling Laws For Less Discriminatory Alternatives
标题:资源、数据和访问限制下的审计:为较少歧视性的替代方案调整法律
链接:https://arxiv.org/abs/2509.05627

作者:Cen, Salil Goyal, Zaynah Javed, Ananya Karthik, Percy Liang, Daniel E. Ho
备注:34 pages, 13 figures


【29】Self-Aligned Reward: Towards Effective and Efficient Reasoners
标题:自我调整的奖励:走向有效和高效的推理者
链接:https://arxiv.org/abs/2509.05489

作者:an, Adit Krishnan, Gerald Friedland, Jiaxuan You, Chris Kong


【30】FAVAE-Effective Frequency Aware Latent Tokenizer
标题:FAVE有效频率感知潜在代币器
链接:https://arxiv.org/abs/2509.05441

作者: Medi, Hsien-Yi Wang, Arianna Rampini, Margret Keuper


【31】Direct-Scoring NLG Evaluators Can Use Pairwise Comparisons Too
标题:直接评分NLG评估者也可以使用成对比较
链接:https://arxiv.org/abs/2509.05440

作者:rence, Ashton Williamson, Alexander Shelton
备注:12 pages, 18 tables, 1 figure


【32】Murphys Laws of AI Alignment: Why the Gap Always Wins
标题:墨菲人工智能对齐定律:为什么差距总是获胜
链接:https://arxiv.org/abs/2509.05381

作者:aikwad
备注:21 pages


【33】Delta Velocity Rectified Flow for Text-to-Image Editing
标题:用于文本到图像编辑的Delta Speed纠正流
链接:https://arxiv.org/abs/2509.05342

作者:eaudouin, Minghan Li, Jaeyeon Kim, Sunghoon Yoon, Mengyu Wang


【34】Feed Two Birds with One Scone: Exploiting Function-Space Regularization for Both OOD Robustness and ID Fine-Tuning Performance
标题:一个烤饼喂两只鸟:利用功能空间正规化来实现OOD稳健性和ID微调性能
链接:https://arxiv.org/abs/2509.05328

作者:n, Jun Shu, Deyu meng, Zongben Xu


【35】Nonnegative matrix factorization and the principle of the common cause
标题:非负矩阵分解与共因原理
链接:https://arxiv.org/abs/2509.03652

作者:yan, A. E. Allahverdyan, A. Hovhannisyan


【36】Integrating Spatial and Semantic Embeddings for Stereo Sound Event Localization in Videos
标题:集成空间和语义嵌入以实现视频中的立体声事件定位
链接:https://arxiv.org/abs/2509.06598

作者:rghi, Philip J. B. Jackson
备注:arXiv admin note: substantial text overlap with arXiv:2507.04845


【37】Musculoskeletal simulation of limb movement biomechanics in Drosophila melanogaster
标题:黑腹果蝇肢体运动生物力学的肌肉骨骼模拟
链接:https://arxiv.org/abs/2509.06426

作者:em Özdil, Chuanfang Ning, Jasper S. Phelps, Sibo Wang-Chen, Guy Elisha, Alexander Blanke, Auke Ijspeert, Pavan Ramdya
备注:23 pages, 11 figures


【38】The Efficiency Frontier: Classical Shadows versus Quantum Footage
标题:效率前沿:经典阴影与量子镜头
链接:https://arxiv.org/abs/2509.06218

作者:a, Junyu Liu
备注:23 pages, many figures


【39】Additive Distributionally Robust Ranking and Selection
标题:加性分布稳健排名和选择
链接:https://arxiv.org/abs/2509.06147

作者: Yuchen Wan, L. Jeff Hong
备注:Due to the 1,920-character limit imposed on the abstract field, the abstract presented here is a truncated version of the full abstract provided in the PDF. The only omitted sentence is: We also prove the additivity and consistency for GAA procedures


【40】Spectral Methods in Complex Systems
标题:复杂系统中的谱方法
链接:https://arxiv.org/abs/2509.05793

作者: Caravelli
备注:Expanded and cleaned notes. Based on lectures given at the online school on spectral methods in complex systems (2019); 467 pages. Comments welcome


【41】Vector-based loss functions for turbulent flow field inpainting
标题:湍流场修复的基于载体的损失函数
链接:https://arxiv.org/abs/2509.05787

作者: Baker, Shubham Goswami, Xiaohang Fang, Felix C. P. Leach


【42】Cryo-EM as a Stochastic Inverse Problem
标题:Cryo-EM作为随机反问题
链接:https://arxiv.org/abs/2509.05541

作者:chez Espinosa, Erik H Thiede, Yunan Yang
备注:25 pages, 8 figures


机器翻译由腾讯交互翻译提供,仅供参考

点击“阅读原文”获取带摘要的学术速递

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/186557
 
52 次点击