Py学习  »  机器学习算法

机器学习学术速递[9.16]

arXiv每日学术速递 • 1 周前 • 31 次点击  

点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.LG 方向,今日共计269篇


大模型相关(28篇)

【1】AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models
标题:AMQ:启用AutoML以实现大型语言模型的混合精度仅加权量化
链接:https://arxiv.org/abs/2509.12019

作者:ee, Seung-taek Woo, Jungyu Jin, Changhun Lee, Eunhyeok Park
备注:EMNLP 2025 Main Conference, Long Paper (Oral)


【2】MillStone: How Open-Minded Are LLMs?
标题:MillStone:法学硕士的思想开放程度如何?
链接:https://arxiv.org/abs/2509.11967

作者:iedman, Vitaly Shmatikov
备注:19 pages, 7 tables, 7 figures


【3】Bridging Vision Language Models and Symbolic Grounding for Video Question Answering
标题:视频问题解答的视觉语言模型和符号基础的桥梁
链接:https://arxiv.org/abs/2509.11862

作者: Vyom Pathak, Daisy Zhe Wang


【4】Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
标题:不相关表示(CIR)的崩溃确保稳健且非破坏性的LLM取消学习
链接:https://arxiv.org/abs/2509.11816

作者:dej, Yushi Yang


【5】PeruMedQA: Benchmarking Large Language Models (LLMs) on Peruvian Medical Exams - Dataset Construction and Evaluation
标题:PeruMedQA:秘鲁医学考试中的大型语言模型(LLM)基准-数据集构建和评估
链接:https://arxiv.org/abs/2509.11517

作者:. Carrillo-Larco, Jesus Lovón Melgarejo, Manuel Castillo-Cara, Gusseppe Bravo-Rocca
备注:his https URL


【6】Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
标题:从边缘到云图形处理器的视觉-语言-动作模型的跨平台扩展
链接:https://arxiv.org/abs/2509.11480

作者:rin, Juyi Lin, Arash Akbari, Arman Akbari, Pu Zhao, Weiwei Chen, David Kaeli, Yanzhi Wang
备注:To appear in the Asilomar Conference on Signals, Systems, and Computers 2025


【7】Enhancing Generalization in Vision-Language-Action Models by Preserving Pretrained Representations
标题:通过保留预训练的表示来增强视觉-语言-动作模型的概括
链接:https://arxiv.org/abs/2509.11417

作者:rover, Akshay Gopalkrishnan, Bo Ai, Henrik I. Christensen, Hao Su, Xuanlin Li
备注:Project Page: this https URL


【8】Intelligent Reservoir Decision Support: An Integrated Framework Combining Large Language Models, Advanced Prompt Engineering, and Multimodal Data Fusion for Real-Time Petroleum Operations
标题:智能储层决策支持:一个集成框架,结合大型语言模型、高级即时工程和多模式数据融合,用于实时石油操作
链接:https://arxiv.org/abs/2509.11376

作者:rosh Mahjour, Seyed Saman Mahjour


【9】PersonaX: Multimodal Datasets with LLM-Inferred Behavior Traits
标题:PersonaX:具有LLM推断行为特征的多峰数据集
链接 :https://arxiv.org/abs/2509.11362

作者:Wong Yu Kang, Minghao Fu, Guangyi Chen, Zhenhao Chen, Gongxu Luo, Yuewen Sun, Salman Khan, Peter Spirtes, Kun Zhang


【10】MatQnA: A Benchmark Dataset for Multi-modal Large Language Models in Materials Characterization and Analysis
标题:MatQnA:材料特征化和分析中多模式大型语言模型的基准数据集
链接:https://arxiv.org/abs/2509.11335

作者:eng, Liqiang Gao, Linwu Zhu, Jian Huang


【11】AQUA: Attention via QUery mAgnitudes for Memory and Compute Efficient Inference in LLMs
标题:AQUA:通过QUery mAgnspel关注LLM中的记忆和计算高效推理
链接:https://arxiv.org/abs/2509.11155

作者:G S, Saurav Prakash, Balaraman Ravindran


【12】Fluid Language Model Benchmarking
标题:流体语言模型基准
链接:https://arxiv.org/abs/2509.11106

作者:Hofmann, David Heineman, Ian Magnusson, Kyle Lo, Jesse Dodge, Maarten Sap, Pang Wei Koh, Chun Wang, Hannaneh Hajishirzi, Noah A. Smith
备注:COLM 2025


【13】The Psychogenic Machine: Simulating AI Psychosis, Delusion Reinforcement and Harm Enablement in Large Language Models
标题:心因机器:模拟大型语言模型中的人工智能精神病、错觉强化和伤害启用
链接:https://arxiv.org/abs/2509.10970

作者: Yeung, Jacopo Dalmasso, Luca Foschini, Richard JB Dobson, Zeljko Kraljevic


【14】HalluField: Detecting LLM Hallucinations via Field-Theoretic Modeling
标题:HalluField:通过场论建模检测LLM幻觉
链接:https://arxiv.org/abs/2509.10753

作者:Brian K. Tran, Syed A. Shah, Geigh Zollicoffer, Nhat Hoang-Xuan, Manish Bhattarai


【15】PolyTruth: Multilingual Disinformation Detection using Transformer-Based Language Models
标题:PolyTruth:使用基于转换器的语言模型的多语言虚假信息检测
链接:https://arxiv.org/abs/2509.10737

作者:iev, Jennifer Waters, Chengqian Wang
备注:11 pages, 5 figures, 4 tables. Submitted to arXiv in Computation and Language


【16】Using LLMs for Late Multimodal Sensor Fusion for Activity Recognition
标题:使用LLM进行后期多模式传感器融合以进行活动识别
链接:https://arxiv.org/abs/2509.10729

作者:irel, Karan Thakkar, Benjamin Elizalde, Miquel Espi Marques, Shirley Ren, Jaya Narain
备注:Preprint, under review


【17】CrunchLLM: Multitask LLMs for Structured Business Reasoning and Outcome Prediction
标题:CrunchLLM:用于结构化业务推理和结果预测的多任务LLM
链接:https://arxiv.org/abs/2509.10698

作者:s Sadia, Qiang Cheng


【18】Struct-Bench: A Benchmark for Differentially Private Structured Text Generation
标题:Struct-Bench:差异私有结构文本生成的基准
链接:https://arxiv.org/abs/2509.10696

作者 :ang, Vikas Raunak, Arturs Backurs, Victor Reis, Pei Zhou, Sihao Chen, Longqi Yang, Zinan Lin, Sergey Yekhanin, Giulia Fanti


【19】LLM in the Middle: A Systematic Review of Threats and Mitigations to Real-World LLM-based Systems
标题:中间的法学硕士:对现实世界基于法学硕士的系统的威胁和缓解措施的系统性审查
链接:https://arxiv.org/abs/2509.10682

作者:o Galhardo Moia, Igor Jochem Sanz, Gabriel Antonio Fontes Rebello, Rodrigo Duarte de Meneses, Briland Hitaj, Ulf Lindqvist
备注:37 pages, 8 figures, 13 tables


【20】Test-Time Warmup for Multimodal Large Language Models
标题:多模式大型语言模型的测试时热身
链接:https://arxiv.org/abs/2509.10641

作者:janeesh, Thomas Zollo, Richard Zemel


【21】SME-TEAM: Leveraging Trust and Ethics for Secure and Responsible Use of AI and LLMs in SMEs
标题:中小企业团队:利用信任和道德,在中小企业中安全、负责任地使用人工智能和LLM
链接:https://arxiv.org/abs/2509.10594

作者:Sarker, Helge Janicke, Ahmad Mohsin, Leandros Maglaras
备注:10 pages


【22】Uncovering the Vulnerability of Large Language Models in the Financial Domain via Risk Concealment
标题:通过风险隐藏揭示金融领域大型语言模型的脆弱性
链接:https://arxiv.org/abs/2509.10546

作者:g, Haibo Jin, Wenbin Zhang, Haohan Wang, Jun Zhuang
备注:Preprint, under review. TL;DR: We propose a multi-turn red-teaming framework, RCA, that reveals critical regulatory vulnerabilities in financial LLMs, achieving over 93% attack success on a proposed new benchmark, FIN-Bench


【23】Holographic Knowledge Manifolds: A Novel Pipeline for Continual Learning Without Catastrophic Forgetting in Large Language Models
标题:全息知识库:大型语言模型中不发生灾难性遗忘的连续学习的新型管道
链接:https://arxiv.org/abs/2509.10518

作者:ndt


【24】The Anti-Ouroboros Effect: Emergent Resilience in Large Language Models from Recursive Selective Feedback
标题:反噬身蛇效应:大型语言模型中来自循环选择性反馈的紧急弹性
链接:https://arxiv.org/abs/2509.10509

作者:Reddy Adapala
备注:5 pages, 3 figures, 2 tables. Code is available at: this https URL


【25】The LLM as a Network Operator: A Vision for Generative AI in the 6G Radio Access Network
标题:LLM作为网络运营商:6G无线电接入网络中生成人工智能的愿景
链接:https://arxiv.org/abs/2509.10478

作者: Giwa, Michael Adewole, Tobi Awodumila, Pelumi Aderinto
备注:Submitted to Workshop on AI and ML for Next-Generation Wireless Communications and Networking, NeurIPS 2025


【26】When marine radar target detection meets pretrained large language models
标题:当海洋雷达目标检测满足预训练的大型语言模型时
链接:https://arxiv.org/abs/2509.12110

作者:, Linping Zhang, Xueqian Wang, Gang Li, Yu Liu, Xiao-Ping Zhang


【27】Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning
标题:Trading-R1:通过强化学习进行LLM推理的金融交易
链接:https://arxiv.org/abs/2509.11420

作者 :o, Edward Sun, Tong Chen, Fang Wu, Di Luo, Wei Wang
备注:Tauric Research: this https URL


【28】Predictable Compression Failures: Why Language Models Actually Hallucinate
标题:可预测的压缩失败:为什么语言模型实际上会产生幻觉
链接:https://arxiv.org/abs/2509.11208

作者:n, Ahmed Karim, Maggie Chlon


Graph相关(图学习|图神经网络|图优化等)(18篇)

【1】Learning Contact Dynamics for Control with Action-conditioned Face Interaction Graph Networks
标题:使用条件条件面部交互图网络学习接触动力学以实现控制
链接:https://arxiv.org/abs/2509.12151

作者:i, Joachim Hertzberg, Martin Atzmueller


【2】Draw a Portrait of Your Graph Data: An Instance-Level Profiling Framework for Graph-Structured Data
标题:绘制图形数据的肖像:图形结构数据的实例级分析框架
链接:https://arxiv.org/abs/2509.12094

作者:ao, Russa Biswas, Megha Khosla


【3】Travel Time and Weather-Aware Traffic Forecasting in a Conformal Graph Neural Network Framework
标题:保形图神经网络框架中的旅行时间和天气感知交通预测
链接:https://arxiv.org/abs/2509.12043

作者:il, Qadeer Ahmed, Shawn Midlam-Mohler
备注:This manuscript has been accepted as a REGULAR PAPER in the Transactions on Intelligent Transportation Systems 2025


【4】Visualization and Analysis of the Loss Landscape in Graph Neural Networks
标题:图神经网络损失格局的可视化与分析
链接:https://arxiv.org/abs/2509.11792

作者:stafa, Lorenz Kummer, Simon Fetzel, Nils M. Kriege, Wilfried N. Gansterer


【5】Drug Repurposing Using Deep Embedded Clustering and Graph Neural Networks
标题:使用深度嵌入式集群和图神经网络进行药物再利用
链接:https://arxiv.org/abs/2509.11493

作者:er, Robert Kroleski, Ali K. AlShami, Jugal Kalita
备注:Accepted at the 2025 International Conference on Machine Learning and Applications (ICMLA)


【6】Derivative-informed Graph Convolutional Autoencoder with Phase Classification for the Lifshitz-Petrich Model
标题:Lifshitz-Petrich模型的具有相分类的导信息图卷积自动编码器
链接:https://arxiv.org/abs/2509.11293

作者:en, Yajie Ji, Zhenli Xu


【7】BIGNet: Pretrained Graph Neural Network for Embedding Semantic, Spatial, and Topological Data in BIM Models
标题:BIGNet:预训练的图神经网络,用于在BMI模型中嵌入语义、空间和布局数据
链接:https://arxiv.org/abs/2509.11104

作者:Xin-Zheng Lu, Jia-Rui Lin


【8】Factor Graph Optimization for Leak Localization in Water Distribution Networks
标题:供水管网泄漏定位的因子图优化
链接:https://arxiv.org/abs/2509.10982

作者:ti, Luis Romero-Ben, Florin Stoican, Vicenç Puig


【9】GTHNA: Local-global Graph Transformer with Memory Reconstruction for Holistic Node Anomaly Evaluation
标题 :GTHNA:具有内存重建的局部-全局图Transformer,用于整体节点异常评估
链接:https://arxiv.org/abs/2509.10869

作者:Li, Xuexiong Luo, Yue Zhang, Yaoyang Li, Fu Lin
备注:9 pages, 7 figures


【10】CogGNN: Cognitive Graph Neural Networks in Generative Connectomics
标题:CogGNN:生成连接组学中的认知图神经网络
链接:https://arxiv.org/abs/2509.10864

作者:ussia, Yijun Lin, Mohamed Ali Mahjoub, Islem Rekik


【11】Verifying Computational Graphs in Production-Grade Distributed Machine Learning Frameworks
标题:生产级分布式机器学习框架中的调试计算图
链接:https://arxiv.org/abs/2509.10694

作者:Zulkifli, Wenbo Qian, Shaowei Zhu, Yuan Zhou, Zhen Zhang, Chang Lou


【12】M4GN: Mesh-based Multi-segment Hierarchical Graph Network for Dynamic Simulations
标题:M4 GN:用于动态模拟的基于网格的多段分层图网络
链接:https://arxiv.org/abs/2509.10659

作者:ictor M. Castillo, Yeping Hu
备注:Accepted and published in Transactions on Machine Learning Research   (TMLR), 2025


【13】STM-Graph: A Python Framework for Spatio-Temporal Mapping and Graph Neural Network Predictions
标题:STM-Shape:用于时空映射和图形神经网络预测的Python框架
链接:https://arxiv.org/abs/2509.10528

作者:in Ghaffari, Huong Nguyen, Lauri Lovén, Ekaterina Gilman
备注:Accepted manuscript (CC BY 4.0). To appear in ACM CIKM 2025, Seoul, Nov 10-14, 2025. DOI: https://doi.org/10.1145/3746252.3761645. The Version of Record will be uploaded when available


【14】Resource-Aware Neural Network Pruning Using Graph-based Reinforcement Learning
标题:使用基于图的强化学习的资源感知神经网络修剪
链接:https://arxiv.org/abs/2509.10526

作者:lemans, Thomas Huybrechts, Jan Steckel, Siegfried Mercelis


【15】Quantum Graph Attention Networks: Trainable Quantum Encoders for Inductive Graph Learning
标题:量子图注意力网络:用于归纳图学习的可训练量子编码器
链接:https://arxiv.org/abs/2509.11390

作者: Faria, Mehdi Djellabi, Igor O. Sokolov, Savvas Varsamopoulos


【16】On the Impact of Downstream Tasks on Sampling and Reconstructing Noisy Graph Signals
标题:下游任务对采样和重建有噪图信号的影响
链接:https://arxiv.org/abs/2509.10874

作者:Sripathmanathan, Xiaowen Dong, Michael Bronstein
备注:This work has been accepted for publication at IEEE CAMSAP 2025


【17】Assessing the Limits of Graph Neural Networks for Vapor-Liquid Equilibrium Prediction: A Cryogenic Mixture Case Study
标题:评估图神经网络用于气液平衡预测的局限性:低温混合物案例研究
链接:https://arxiv.org/abs/2509.10565

作者:ta


【18】FireGNN: Neuro-Symbolic Graph Neural Networks with Trainable Fuzzy Rules for Interpretable Medical Image Classification
标题:FireGNN:具有可训练模糊规则的神经符号图神经网络,用于可解释医学图像分类
链接:https://arxiv.org/abs/2509.10510

作者:ngupta, Islem Rekik


Transformer(9篇)

【1】Dynamic Relational Priming Improves Transformer in Multivariate Time Series
标题:动态关系启动改进多元时间序列中的Transformer
链接:https://arxiv.org/abs/2509.12196

作者:e, Corey Clark


【2】SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
标题:SpeCa:具有推测性特征缓存的加速扩散变换器
链接:https://arxiv.org/abs/2509.11628

作者:Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, Linfeng Zhang
备注:15 pages, 9 figures, ACM Multimedia 2025


【3】Tabular Data with Class Imbalance: Predicting Electric Vehicle Crash Severity with Pretrained Transformers (TabPFN) and Mamba-Based Models
标题:具有类别不平衡的表格数据:使用预训练的Transformer(TabPFN)和基于Mamba的模型预测电动汽车碰撞严重程度
链接:https://arxiv.org/abs/2509.11449

作者:Somvanshi, Pavan Hebli, Gaurab Chhetri, Subasish Das
备注:This is the author's preprint version of a paper accepted for presentation at the 24th International Conference on Machine Learning and Applications (ICMLA 2025), December 3-5, 2025, Florida, USA. The final published version will appear in the official IEEE proceedings. Conference site: this https URL


【4】TransZero: Parallel Tree Expansion in MuZero using Transformer Networks
标题:TransZero:使用Transformer网络在MuZero中进行并行树扩展
链接:https://arxiv.org/abs/2509.11233

作者:sten, Wendelin Böhmer
备注:Submitted to BNAIC/BeNeLearn 2025. 15 pages, 4 figures


【5】Multi-Modal Sensing Aided mmWave Beamforming for V2V Communications with Transformers
标题:用于与Transformer进行V2V通信的多模式传感辅助毫米波束形成
链接:https://arxiv.org/abs/2509.11112

作者:Baqer Mollah, Honggang Wang, Hua Fang
备注:6 Pages, Accepted to present at 2025 IEEE Global Communications Conference (GLOBECOM), Taipei, Taiwan


【6】GoldenTransformer: A Modular Fault Injection Framework for Transformer Robustness Research
标题:GoldenTransformer:用于Transformer稳健性研究的模块化故障注入框架
链接:https://arxiv.org/abs/2509.10790

作者:rd
备注:4 Pages


【7】Kalman Bayesian Transformer
标题:卡尔曼贝氏Transformer
链接:https://arxiv.org/abs/2509.10695

作者:ing, Oren Wright, José M. F. Moura, Yorie Nakahira
备注:Accepted to the 64th IEEE Conference on Decision and Control (CDC 2025)


【8】Wavelet-SARIMA-Transformer: A Hybrid Model for Rainfall Forecasting
标题:Wavelet-SARIMA-Transformer:降雨预测的混合模型
链接:https://arxiv.org/abs/2509.11903

作者:aikia, Kuldeep Goswami, Sarat C. Kakaty


【9】Adaptive Temporal Fusion Transformers for Cryptocurrency Price Prediction
标题:用于加密货币价格预测的自适应时间融合转换器
链接:https://arxiv.org/abs/2509.10542

作者:k, Mohammad Ali Zare Chahooki, Amin Milani Fard, Mehdi Agha Sarram


GAN|对抗|攻击|生成相关(13篇)

【1】From Autoencoders to CycleGAN: Robust Unpaired Face Manipulation via Adversarial Learning
标题:从自动编码器到CycleGAN:通过对抗学习进行稳健的非配对面部操纵
链接:https://arxiv.org/abs/2509.12176

作者:o
备注:8 pages, 7 figures


【2】LEGO: Spatial Accelerator Generation and Optimization for Tensor Applications
标题:乐高:针对张量应用的空间加速器生成和优化
链接:https://arxiv.org/abs/2509.12053

作者:, Zhekai Zhang, Song Han
备注:The first two authors have equal contributions; Published as a conference paper in HPCA 2025; 13 pages, 14 figures


【3】DRAG: Data Reconstruction Attack using Guided Diffusion
标题:DRAG:使用引导扩散的数据重建攻击
链接:https://arxiv.org/abs/2509.11724

作者:i, Jun-Cheng Chen, Shang-Tse Chen
备注:ICML 2025


【4】CoachMe: Decoding Sport Elements with a Reference-Based Coaching Instruction Generation Model
标题:CoachMe:基于参考的教练指导生成模型解码运动元素
链接:https://arxiv.org/abs/2509.11698

作者:Yeh, Yu-An Su, Chih-Ning Chen, Yi-Hsueh Lin, Calvin Ku, Wen-Hsin Chiu, Min-Chun Hu, Lun-Wei Ku
备注:Published in Proceedings of the 63rd Annual Meeting of the   Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025.   Official version: https://doi.org/10.18653/v1/2025.acl-long.1413


【5】A Controllable 3D Deepfake Generation Framework with Gaussian Splatting
标题:一种基于高斯溅射的可控3D Deepfake生成框架
链接:https://arxiv.org/abs/2509.11624

作者:iu, Siyun Liang, Huy H. Nguyen, Isao Echizen
备注:None


【6】DARD: Dice Adversarial Robustness Distillation against Adversarial Attacks
标题:DARD:对抗性攻击的对抗鲁棒性蒸馏
链接:https://arxiv.org/abs/2509.11525

作者: Shungeng Zhang, Meikang Qiu, Chong Li
备注:Accepted at SecureComm 2025, 15 pages, 4 figures


【7】On the Escaping Efficiency of Distributed Adversarial Training Algorithms
标题:分布式对抗训练算法的逃避效率研究
链接:https://arxiv.org/abs/2509.11337

作者: Kun Yuan, Ali H. Sayed


【8】ToMA: Token Merge with Attention for Image Generation with Diffusion Models
标题:ToMA:关注代币合并,利用扩散模型生成图像
链接:https://arxiv.org/abs/2509.10918

作者: Shaoyi Zheng, Yuxuan Xia, Shengjie Wang
备注:In proceedings of the 42nd International Conference on Machine Learning (ICML 2025). Code available at this https URL


【9】Robust DDoS-Attack Classification with 3D CNNs Against Adversarial Methods
标题:使用3D CNN对抗对抗性方法的稳健DDoS攻击分类
链接:https://arxiv.org/abs/2509.10543

作者:agg, Nathan Dorsey, Josh Prior, John Ajit, Ben Kim, Nate Willis, Pablo Rivas
备注:The 27th International Conference on Artificial Intelligence (ICAI'25)


【10】DualAlign: Generating Clinically Grounded Synthetic Data
标题:DualAlign:生成基于临床的合成数据
链接:https://arxiv.org/abs/2509.10538

作者:, Xun Wang, Hong Yu


【11】Semantic-guided LoRA Parameters Generation
标题:语义引导的LoRA参数生成
链接:https://arxiv.org/abs/2509.10535

作者:, Yang Chen, Zhijie Rao, Can Jiang, Jingcai Guo
备注:19 pages, 9 figures


【12】The 1st International Workshop on Disentangled Representation Learning for Controllable Generation (DRL4Real): Methods and Results
标题:第一届可控生成分解表示学习国际研讨会(DRL 4Real):方法和结果
链接:https://arxiv.org/abs/2509.10463

作者:n, Xin Jin, Yue Song, Xihui Liu, Shuai Yang, Tao Yang, Ziqiang Li, Jianguo Huang, Yuntao Wei, Ba'ao Xie, Nicu Sebe, Wenjun (Kevin)Zeng, Jooyeol Yun, Davide Abati, Mohamed Omran, Jaegul Choo, Amir Habibian, Auke Wiggers, Masato Kobayashi, Ning Ding, Toru Tamaki, Marzieh Gheisari, Auguste Genovesio, Yuheng Chen, Dingkun Liu, Xinyao Yang, Xinping Xu, Baicheng Chen, Dongrui Wu, Junhao Geng, Lexiang Lv, Jianxin Lin, Hanzhe Liang, Jie Zhou, Xuanxin Chen, Jinbao Wang, Can Gao, Zhangyi Wang, Zongze Li, Bihan Wen, Yixin Gao, Xiaohan Pan, Xin Li, Zhibo Chen, Baorui Peng, Zhongming Chen, Haoran Jin
备注:Workshop summary paper for ICCV 2025, 9 accepted papers, 9 figures, IEEE conference format, covers topics including diffusion models, controllable generation, 3D-aware disentanglement, autonomous driving applications, and EEG analysis


【13】Next-Generation Reservoir Computing for Dynamical Inference
标题:用于动态推理的下一代水库计算
链接:https://arxiv.org/abs/2509.11338

作者:ik, Erik A. Martens
备注:10 pages, 10 figures


半/弱/无/有监督|不确定性|主动学习(12篇)

【1】High Effort, Low Gain: Fundamental Limits of Active Learning for Linear Dynamical Systems
标题:高努力、低收益:线性动态系统主动学习的基本限制
链接:https://arxiv.org/abs/2509.11907

作者:hatzikiriakos, Kevin Jamieson, Andrea Iannelli


【2】Learning Representations in Video Game Agents with Supervised Contrastive Imitation Learning
标题:具有监督对比学习的视频游戏代理中的学习表示
链接:https://arxiv.org/abs/2509.11880

作者:lemin, Joseph Brennan, Pierluigi Vito Amadori, Tim Bradley
备注:None


【3】Inducing Uncertainty for Test-Time Privacy
标题:引入测试时隐私的不确定性
链接:https://arxiv.org/abs/2509.11625

作者:H. Ashiq, Peter Triantafillou, Hung Yun Tseng, Grigoris G. Chrysos


【4】Modality-Aware Infrared and Visible Image Fusion with Target-Aware Supervision
标题:具有目标感知监督的模式感知红外和可见光图像融合
链接:https://arxiv.org/abs/2509.11476

作者:un, Dawei Xiang, Tianqi Ding, Xiang Fang, Yijiashun Qi, Zunduo Zhao
备注:Accepted by 2025 6th International Conference on Computer Vision and Data Mining (ICCVDM 2025)


【5】Beyond Instance Consistency: Investigating View Diversity in Self-supervised Learning
标题:超越实例一致性:调查自我监督学习中的观点多样性
链接:https://arxiv.org/abs/2509.11344

作者:Qin, Muli Yang, Siyuan Hu, Peng Hu, Yu Zhang, Chen Gong, Hongyuan Zhu
备注:Published in TMLR. Review: https://openreview.net/forum?id=urWCU3YMA0


【6】Matched-Pair Experimental Design with Active Learning
标题:具有主动学习的匹配对实验设计
链接:https://arxiv.org/abs/2509.10742

作者:, Gautam Dasarathy, Visar Berisha


【7】Self-Supervised Goal-Reaching Results in Multi-Agent Cooperation and Exploration
标题:多智能体合作和探索中自我监督的目标达成结果
链接:https://arxiv.org/abs/2509.10656

作者:imonkar, Shlok Shah, Catherine Ji, Benjamin Eysenbach
备注:Project website with videos this https URL and code this https URL are online


【8】Building a General SimCLR Self-Supervised Foundation Model Across Neurological Diseases to Advance 3D Brain MRI Diagnoses
标题:构建神经系统疾病的通用Simpline自我监督基金会模型以推进3D脑部MRI诊断
链接:https://arxiv.org/abs/2509.10620

作者:zmarek, Justin Szeto, Brennan Nichyporuk, Tal Arbel
备注:Accepted to ICCV 2025 Workshop CVAMD


【9】Adaptive Preference Optimization with Uncertainty-aware Utility Anchor
标题:具有不确定性感知效用锚的自适应偏好优化
链接:https://arxiv.org/abs/2509.10515

作者:ng, Zixia Jia, Jiaqi Li, Qi Liu, Zilong Zheng
备注:Accepted by EMNLP 2025 Findings


【10】Parameter estimation with uncertainty quantification from continuous measurement data using neural network ensembles
标题:使用神经网络集成从连续测量数据进行不确定性量化的参数估计
链接:https://arxiv.org/abs/2509.10756

作者:nteneh


【11】HiLWS: A Human-in-the-Loop Weak Supervision Framework for Curating Clinical and Home Video Data for Neurological Assessment
标题:HiLWS:一个人在环弱监督框架,用于管理神经系统评估的临床和家庭视频数据
链接:https://arxiv.org/abs/2509.10557

作者:ani, Maryam S. Mirian, Alex Lassooij, Reshad Hosseini, Hadi Moradi, Martin J. McKeown


【12】Data-Efficient Psychiatric Disorder Detection via Self-supervised Learning on Frequency-enhanced Brain Networks
标题:通过频率增强大脑网络上的自我监督学习进行数据高效的精神疾病检测
链接:https://arxiv.org/abs/2509.10524

作者:, Mengchu Zhu, Qichao Dong, Ting Dang, Jiangang Ma, Jing Ren, Feng Xia


迁移|Zero/Few/One-Shot|自适应(8篇)

【1】FedDAF: Federated Domain Adaptation Using Model Functional Distance
标题:Federator:使用模型功能距离的联邦域自适应
链接:https://arxiv.org/abs/2509.11819

作者:en, Ankita Das, Sidhant Nair, C Krishna Mohan
备注:9 pages, 2 figures, 3 tables. Submitted to WACV 2026


【2】Adaptive-GraphSketch: Real-Time Edge Anomaly Detection via Multi-Layer Tensor Sketching and Temporal Decay
标题:Adaptive-GraphSketch:通过多层张量绘制和时间衰减进行实时边缘异常检测
链接:https://arxiv.org/abs/2509.11633

作者:thony Ekle, William Eberle
备注:10 pages, 6 figures. Accepted for presentation at the IEEE International Conference on Knowledge Graphs (ICKG 2025). This is the authors accepted version; the final published paper will be available via IEEE Xplore


【3】Dynamic Adaptive Parsing of Temporal and Cross-Variable Patterns for Network State Classification
标题:用于网络状态分类的时间和交叉变量模式的动态自适应解析
链接:https://arxiv.org/abs/2509.11601

作者: Xuelong Wang, Zhenguo Dong, Yong Zhang


【4】Neurosymbolic AI Transfer Learning Improves Network Intrusion Detection
标题:神经符号人工智能迁移学习改进网络入侵检测
链接:https://arxiv.org/abs/2509.10850

作者:T. Tran, Jacob Sander, Achraf Cohen, Brian Jalaian, Nathaniel D. Bastian
备注:9 pages, 2 figures, 6 tables


【5】FinXplore: An Adaptive Deep Reinforcement Learning Framework for Balancing and Discovering Investment Opportunities
标题:FinXplore:用于平衡和发现投资机会的自适应深度强化学习框架
链接:https://arxiv.org/abs/2509.10531

作者:Choudhary, Arishi Orra, Manoj Thakur


【6】Dynamic Adaptive Shared Experts with Grouped Multi-Head Attention Mixture of Experts
标题:具有分组多头注意力专家混合的动态自适应共享专家
链接:https://arxiv.org/abs/2509.10530

作者: Jiexiong Liu, Yixuan Chen, Jie ji


【7】A Service-Oriented Adaptive Hierarchical Incentive Mechanism for Federated Learning
标题:面向服务的联邦学习自适应分层激励机制
链接:https://arxiv.org/abs/2509.10512

作者:ao, Yuzhou Gao, Jiwei Huang
备注:Accepted at CollaborateCom 2025


【8】SABR: A Stable Adaptive Bitrate Framework Using Behavior Cloning Pretraining and Reinforcement Learning Fine-Tuning
标题:SABR:使用行为克隆预训练和强化学习微调的稳定自适应比特率框架
链接:https://arxiv.org/abs/2509.10486

作者: Luo, Yunyang Zhao, Bowen Zhang, Genke Yang, Boon-Hee Soong, Chau Yuen


强化学习(7篇)

【1】$K$-Level Policy Gradients for Multi-Agent Reinforcement Learning
标题:$K$-多智能体强化学习的级别策略要素
链接:https://arxiv.org/abs/2509.12117

作者:eddi, Gabriele Tiboni, Jan Peters, Carlo D'Eramo


【2】Generalizing Behavior via Inverse Reinforcement Learning with Closed-Form Reward Centroids
标题:通过具有封闭形式奖励中心的反向强化学习来概括行为
链接:https://arxiv.org/abs/2509.12010

作者:azzati, Alberto Maria Metelli


【3】UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning
标题:UI-S1:通过半在线强化学习推进图形界面自动化
链接:https://arxiv.org/abs/2509.11543

作者:u, Jiabo Ye, Fei Tang, Yongliang Shen, Haiyang Xu, Ziwei Zheng, Weiming Lu, Ming Yan, Fei Huang, Jun Xiao, Yueting Zhuang
备注:22 pages, 17 figures


【4】SafeDiver: Cooperative AUV-USV Assisted Diver Communication via Multi-agent Reinforcement Learning Approach
标题:SafeDiver:通过多智能体强化学习方法进行AUV-USV合作辅助潜水员沟通
链接:https://arxiv.org/abs/2509.11508

作者:Deng, Hang Tao, Xinxiang Wang, Yinyan Wang, Hanjiang Luo


【5】Gradient Free Deep Reinforcement Learning With TabPFN
标题:使用TabPFN的无梯度深度强化学习
链接:https://arxiv.org/abs/2509.11259

作者:iff, Ofir Lindenbaum, Yonathan Efroni


【6】Coordinated Reinforcement Learning Prefetching Architecture for Multicore Systems
标题:多核系统的协调强化学习预取架构
链接:https://arxiv.org/abs/2509.10719

作者:Humaid Siddiqui, Fernando Guzman, Yufei Wu, Ruishu Ann
备注:47 pages, 12 figures, technical report prepared at Fairleigh Dickinson University


【7】LogGuardQ: A Cognitive-Enhanced Reinforcement Learning Framework for Cybersecurity Anomaly Detection in Security Logs
标题:LogGuardQ:用于安全收件箱中网络安全异常检测的认知增强强化学习框架
链接:https://arxiv.org/abs/2509.10511

作者:onçalves de Sousa
备注:17 pages, 6 figures


符号|符号学习(2篇)

【1】Neuro-Symbolic Agents with Modal Logic for Autonomous Diagnostics
标题:具有模式逻辑的神经符号代理用于自主诊断
链接:https://arxiv.org/abs/2509.11943

作者:ulc, Thorsten Hellert
备注:10 pages, 1 figure, Scaling Environments for Agents (SEA) Workshop at NeuralIPS


【2】Exploring Multi-view Symbolic Regression methods in physical sciences
标题:物理科学中的多视图符号回归方法探讨
链接:https://arxiv.org/abs/2509.10500

作者:usseil, Fabrício Olivetti de França, Konstantin Malanchev, Guillaume Moinard, Maxime Cherrey
备注:15 pages, 7 figures. Presented at the "Symbolic regression in the physical sciences" conference at the Royal Society. Submitted to Philosophical Transactions A


医学相关(4篇)

【1】Disentanglement of Biological and Technical Factors via Latent Space Rotation in Clinical Imaging Improves Disease Pattern Discovery
标题:临床成像中通过潜在空间旋转解开生物和技术因素,改善疾病模式发现
链接:https://arxiv.org/abs/2509.11436

作者:n, Philipp Seeböck, Christoph Fürböck, Svitlana Pochepnia, Jennifer Straub, Lucian Beer, Helmut Prosch, Georg Langs
备注:The Fourth Workshop on Applications of Medical Artificial Intelligence, AMAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, Republic of Korea, September 23, 2025, Proceedings


【2】A Comparative Benchmark of Federated Learning Strategies for Mortality Prediction on Heterogeneous and Imbalanced Clinical Data
标题:用于非均匀和不平衡临床数据死亡率预测的联邦学习策略比较基准
链接:https://arxiv.org/abs/2509.10517

作者:ertulino
备注 :This has been preparing to be submitted to the Journal of the Brazilian Computer Society (JBCS)


【3】EMeRALDS: Electronic Medical Record Driven Automated Lung Nodule Detection and Classification in Thoracic CT Images
标题:EmeRALDS:电子医疗记录驱动的胸部CT图像中的自动肺部结节检测和分类
链接:https://arxiv.org/abs/2509.11714

作者:n, Furqan Shaukat, Muhammad Hamza Zafar, Syed Muhammad Anwar


【4】FlowECG: Using Flow Matching to Create a More Efficient ECG Signal Generator
标题:Flow心电图:使用流量匹配创建更高效的心电图信号发生器
链接:https://arxiv.org/abs/2509.10491

作者:ondar, Serhii Semenov, Vira Babenko, Dmytro Holovniak
备注:8 pages, 2 figures, 1 table, reviewed version will be published in "Sensors, Devices and Systems 2025 Proceedings" (Springer's Lecture Notes in Electrical Engineering)


蒸馏|知识提取(3篇)

【1】Stabilizing Data-Free Model Extraction
标题:稳定无数据模型提取
链接:https://arxiv.org/abs/2509.11159

作者: Nguyen, Kim-Hung Le, Nhien-An Le-Khac
备注:28th European Conference on Artificial Intelligence (ECAI-2025)


【2】PHLoRA: data-free Post-hoc Low-Rank Adapter extraction from full-rank checkpoint
标题:PHLoRA:从全级别检查点提取无数据的事后低级别适配器
链接:https://arxiv.org/abs/2509.10971

作者:asani, Jack FitzGerald, Anjie Fang, Sushmit Vaish


【3】Predictive Free Energy Simulations Through Hierarchical Distillation of Quantum Hamiltonians
标题:通过量子Hamilton分层蒸馏进行预测自由能模拟
链接:https://arxiv.org/abs/2509.10967

作者:Li, Garnet Kin-Lic Chan


推荐(3篇)

【1】Federated Recommender System with Data Valuation for E-commerce Platform
标题:电子商务平台数据评估联合推荐系统
链接:https://arxiv.org/abs/2509.11196

作者:ark, Minku Kang, Wooseok Sim, Soyoung Lee, Hogun Park
备注:Accepted to Expert Systems with Applications Journal, Elsevier


【2】Privacy-Preserving Personalization in Education: A Federated Recommender System for Student Performance Prediction
标题:保护隐私的教育个性化:学生表现预测的联邦推荐系统
链接:https://arxiv.org/abs/2509.10516

作者:ertulino
备注:This paper has been prepared to be submitted to the Brazilian Journal of Informatics in Education - RBIE


【3】Momentum-integrated Multi-task Stock Recommendation with Converge-based Optimization
标题:基于融合优化的动量集成多任务股票推荐
链接:https://arxiv.org/abs/2509.10461

作者: Jingshu Peng, Yanyan Shen, Xujia Li, Lei Chen
备注:10 pages, 5 figures


聚类(1篇)

【1】MMM: Clustering Multivariate Longitudinal Mixed-type Data
标题:MMM:对多元纵向混合型数据进行聚集
链接:https://arxiv.org/abs/2509.12166

作者: Amato, Julien Jacques


自动驾驶|车辆|车道检测等(1篇)

【1】Retrosynthesis Planning via Worst-path Policy Optimisation in Tree-structured MDPs
标题:基于最差路径策略优化的树型MDP逆合成规划
链接:https://arxiv.org/abs/2509.10504

作者:ang, Giovanni Montana


联邦学习|隐私保护|加密(3篇)

【1】Accurate and Private Diagnosis of Rare Genetic Syndromes from Facial Images with Federated Deep Learning
标题:利用联邦深度学习从面部图像准确且私人地诊断罕见遗传综合症
链接:https://arxiv.org/abs/2509.10635

作者: Ünal, Cem Ata Baykara, Peter Krawitz, Mete Akgün


【2】On Using Large-Batches in Federated Learning
标题:关于在联邦学习中使用大批量学习
链接:https://arxiv.org/abs/2509.10537

作者:gi


【3】Cost-Free Personalization via Information-Geometric Projection in Bayesian Federated Learning
标题:通过Bayesian联邦学习中的信息几何投影实现无成本个性化
链接:https://arxiv.org/abs/2509.10132

作者:ussi, Giuseppe Serra, Photios A. Stavrou, Marios Kountouris


推理|分析|理解|解释(9篇)

【1】Early Detection of Branched Broomrape (Phelipanche ramosa) Infestation in Tomato Crops Using Leaf Spectral Analysis and Machine Learning
标题:利用叶片光谱分析和机器学习早期检测番茄作物中枝蔓越菜(Volipanche ramosa)侵扰
链接:https://arxiv.org/abs/2509.12074

作者:eza Narimani, Alireza Pourreza, Ali Moghimi, Parastoo Farajpoor, Hamid Jafarbiglu, Mohsen B. Mesgaran
备注:Author-accepted version. Accepted and presented at AGRICONTROL 2025 (8th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture), UC Davis, USA. To appear in IFAC-PapersOnLine (Elsevier)


【2】Data-Driven Analysis of Text-Conditioned AI-Generated Music: A Case Study with Suno and Udio
标题:文本条件人工智能生成音乐的数据驱动分析:Suno和Udio的案例研究
链接:https://arxiv.org/abs/2509.11824

作者:ni, Laura Cros Vila, David Dalmazzo, Anna-Kaisa Kaila, Bob L.T. Sturm
备注:Submitted for review to TISMIR Digital Musicology special issue


【3】Measuring Visual Understanding in Telecom domain: Performance Metrics for Image-to-UML conversion using VLMs
标题:电信领域中的视觉理解测量:使用VLM的图像到UML转换的性能测试
链接:https://arxiv.org/abs/2509.11667

作者:i, Rutuja Prabhudesai


【4】OASIS: A Deep Learning Framework for Universal Spectroscopic Analysis Driven by Novel Loss Functions
标题:OASIS:由新型损失函数驱动的通用光谱分析深度学习框架
链接:https://arxiv.org/abs/2509.11499

作者:ng, Juejing Liu, Marie L. Mortensen, Yifu Feng, Elizabeth Li, Zheming Wang, Xiaofeng Guo, Kevin M. Rosso, Xin Zhang


【5】Your Compiler is Backdooring Your Model: Understanding and Exploiting Compilation Inconsistency Vulnerabilities in Deep Learning Compilers
标题:您的编译器正在为您的模型做后门:了解和利用深度学习编译器中的编译不一致漏洞
链接:https://arxiv.org/abs/2509.11173

作者:n, Jinjun Peng, Yixin He, Junfeng Yang, Baishakhi Ray
备注:This paper is accepted to S&P 2026


【6】From Predictions to Explanations: Explainable AI for Autism Diagnosis and Identification of Critical Brain Regions
标题:从预测到解释:用于自闭症诊断和关键大脑区域识别的可解释人工智能
链接:https://arxiv.org/abs/2509.10523

作者:a, Amir Aly, Emmanuel Ifeachor, Rohit Shankar


【7】A Differential Manifold Perspective and Universality Analysis of Continuous Attractors in Artificial Neural Networks
标题:人工神经网络中连续吸引子的差模透视和普适性分析
链接:https://arxiv.org/abs/2509.10514

作者:ian, Hongkai Liu, Yuying Yang, Jiali Yu, Zizheng Miao, Xuming Huang, Zhishuai Liu, Zhang Yi


【8】Branched Broomrape Detection in Tomato Farms Using Satellite Imagery and Time-Series Analysis
标题:利用卫星图像和时间序列分析检测番茄农场的枝状扫帚
链接:https://arxiv.org/abs/2509.10804

作者:eza Narimani, Alireza Pourreza, Ali Moghimi, Parastoo Farajpoor, Hamid Jafarbiglu, Mohsen Mesgaran
备注:Author-accepted version. Published in Proceedings of SPIE Defense +   Commercial Sensing 2025, Autonomous Air and Ground Sensing Systems for   Agricultural Optimization and Phenotyping X (Vol. 13475), Paper 134750U.   Official version: https://doi.org/10.1117/12.3059998


【9】Why Bonds Fail Differently? Explainable Multimodal Learning for Multi-Class Default Prediction
标题:为什么债券会失败?用于多类违约预测的可解释多模式学习
链接:https://arxiv.org/abs/2509.10802

作者:fan Ling, Chaoqun Wang, Yaxin Xu


检测相关(5篇)

【1】Improving Out-of-Domain Audio Deepfake Detection via Layer Selection and Fusion of SSL-Based Countermeasures
标题:通过基于SSL的对策的层选择和融合改进域外音频深度伪造检测
链接:https://arxiv.org/abs/2509.12003

作者:rrano, Raphaël Duroselle, Florian Angulo, Jean-François Bonastre, Olivier Boeffard


【2】Watch Your Step: A Cost-Sensitive Framework for Accelerometer-Based Fall Detection in Real-World Streaming Scenarios
标题:注意脚下:在现实世界流媒体场景中基于加速计的跌倒检测的成本敏感框架
链接:https://arxiv.org/abs/2509.11789

作者: B. Aderinola, Luca Palmerini, Ilaria D'Ascanio, Lorenzo Chiari, Jochen Klenk, Clemens Becker, Brian Caulfield, Georgiana Ifrim


【3】Detecting Model Drifts in Non-Stationary Environment Using Edit Operation Measures
标题:使用编辑操作措施检测非静止环境中的模型漂移
链接:https://arxiv.org/abs/2509.11367

作者:n Lee, Alexander Shim
备注:28 pages, 3 figures, 17 tables


【4】Agentic Username Suggestion and Multimodal Gender Detection in Online Platforms: Introducing the PNGT-26K Dataset
标题:在线平台中的显式语音建议和多模式性别检测:介绍PNGT-26 K数据集
链接:https://arxiv.org/abs/2509.11136

作者:jary, Mohsen Ebadpour, Amirhosein Tajbakhsh


【5】FEDEXCHANGE: Bridging the Domain Gap in Federated Object Detection for Free
标题:FEDEXCHANGE:免费弥合联邦对象检测中的领域差距
链接:https://arxiv.org/abs/2509.10503

作者:an, Jingtao Li, Weiming Zhuang, Chen Chen, Lingjuan Lyu


分类|识别(10篇)

【1】Scaling to Multimodal and Multichannel Heart Sound Classification: Fine-Tuning Wav2Vec 2.0 with Synthetic and Augmented Biosignals
标题:扩展到多模式和多通道心脏声音分类:利用合成和增强生物信号进行微调Wav2Vec 2.0
链接:https://arxiv.org/abs/2509.11606

作者:occhi, Matthew Fynn, Kayapanda Mandana, Yue Rong
备注:35 pages, 37 figures, 19 tables


【2】Protected Probabilistic Classification Library
标题:受保护的概率分类库
链接:https://arxiv.org/abs/2509.11267

作者:j


【3】Machine Learning Framework for Audio-Based Equipment Condition Monitoring: A Comparative Study of Classification Algorithms
标题:基于音频的设备状态监控的机器学习框架:分类算法的比较研究
链接:https://arxiv.org/abs/2509.11075

作者:illai, Yodhin Agarwal, Zaheeruddin Ahmed
备注:10 pages, 7 figures. Accepted for publication in the proceedings of the 2025 Advances in Science and Engineering Technology International Conferences (ASET)


【4】A Comparison of Selected Image Transformation Techniques for Malware Classification
标题:用于恶意软件分类的选定图像转换技术的比较
链接:https://arxiv.org/abs/2509.10838

作者:rawal, Kunal Bhatnagar, Andrew Do, Ronnit Rana, Mark Stamp


【5】Least-Ambiguous Multi-Label Classifier
标题:最不模糊的多标签分类器
链接:https://arxiv.org/abs/2509.10689

作者:sighe Hagos, Claes Lundström
备注:Accepted at the 37th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2025


【6】Interpretable neural network system identification method for two families of second-order systems based on characteristic curves
标题:基于特征曲线的两类二阶系统可解释神经网络系统识别方法
链接:https://arxiv.org/abs/2509.10632

作者:J. Gonzalez, Luis P. Lara
备注:None


【7】Offline Contextual Bandit with Counterfactual Sample Identification
标题:具有反事实样本识别的离线背景盗贼
链接:https://arxiv.org/abs/2509.10520

作者: Gilotte, Otmane Sakhi, Imad Aouali, Benjamin Heymann
备注:Recsys '25, CONSEQUENCES: Causality, Counterfactuals & Sequential Decision-Making Workshop


【8】Spectral and Rhythm Features for Audio Classification with Deep Convolutional Neural Networks
标题:利用深度卷积神经网络进行音频分类的频谱和节奏特征
链接:https://arxiv.org/abs/2410.06927

作者: Wolf-Monheim


【9】Learning Majority-to-Minority Transformations with MMD and Triplet Loss for Imbalanced Classification
标题:利用MMD和三重损失学习多数到少数变换以实现不平衡分类
链接:https://arxiv.org/abs/2509.11511

作者 :, Hyunjoong Kim
备注:.19 pages, 6 figures


【10】Crystal Systems Classification of Phosphate-Based Cathode Materials Using Machine Learning for Lithium-Ion Battery
标题:利用机器学习对锂离子电池磷酸盐基正极材料的晶体体系分类
链接:https://arxiv.org/abs/2509.10532

作者:dav, Sandeep K Yadav, Vivek Vijay, Ambesh Dixit
备注:21 Pages, 12 Figures, Submitted to Physica B: Condensed Matter Journal


表征(4篇)

【1】Event2Vec: A Geometric Approach to Learning Composable Representations of Event Sequences
标题:Event2Vec:学习事件序列可组合表示的几何方法
链接:https://arxiv.org/abs/2509.12188

作者:ulc
备注:10 pages, 3 figures, Symmetry and Geometry in Neural Representations Workshop at NeuralIPS (Neurreps) 2025


【2】GCN-TULHOR: Trajectory-User Linking Leveraging GCNs and Higher-Order Spatial Representations
标题:GCN-TULHOR:利用GCN和更高级空间表示的轨迹用户链接
链接:https://arxiv.org/abs/2509.11095

作者:, Pranav Gupta, Manos Papagelis


【3】SH-SAS: An Implicit Neural Representation for Complex Spherical-Harmonic Scattering Fields for 3D Synthetic Aperture Sonar
标题:SH-SAS:三维合成孔径声纳复杂球谐散射场的隐式神经表示
链接:https://arxiv.org/abs/2509.11087

作者:ilendra Vengurlekar, Adithya Pediredla, Suren Jayasuriya


【4】Contrastive Network Representation Learning
标题:对比网络表示学习
链接:https://arxiv.org/abs/2509.11316

作者:g, Xin Zhou, Ryumei Nakada, Lexin Li, Linjun Zhang


3D|3D重建等相关(1篇)

【1】WildSmoke: Ready-to-Use Dynamic 3D Smoke Assets from a Single Video in the Wild
标题:WildSmoke:来自野外单个视频的即可使用的动态3D烟雾资源
链接:https://arxiv.org/abs/2509.11114

作者:, Jialin Song, Manolis Savva, Wuyang Chen


编码器(2篇)

【1】Lightweight Metadata-Aware Mixture-of-Experts Masked Autoencoder for Earth Observation
标题:用于地球观测的轻量级元数据感知专家混合掩蔽自动编码器
链接:https://arxiv.org/abs/2509.10919

作者:lbughdadi


【2】Rethinking Sparse Autoencoders: Select-and-Project for Fairness and Control from Encoder Features Alone
标题:重新思考稀疏自动编码器:选择和项目以实现公平性和仅通过编码器功能进行控制
链接:https://arxiv.org/abs/2509.10809

作者:ărbălau, Cristian Daniel Păduraru, Teodor Poncu, Alexandru Tifrea, Elena Burceanu


优化|敛散性(17篇)

【1】Foundational theory for optimal decision tree problems. II. Optimal hypersurface decision tree algorithm
标题:最优决策树问题的基础理论。二.最优超表面决策树算法
链接:https://arxiv.org/abs/2509.12057

作者


【2】Low-rank Orthogonalization for Large-scale Matrix Optimization with Applications to Foundation Model Training
标题:大规模矩阵优化的低等级子化及其在基础模型训练中的应用
链接:https://arxiv.org/abs/2509.11983

作者: Zhanwang Deng, Zhaosong Lu
备注:27 pages


【3】Topology Structure Optimization of Reservoirs Using GLMY Homology
标题:利用GLMY同调进行储层结构优化
链接:https://arxiv.org/abs/2509.11612

作者:Shengwei Wang, Hongwei Lin


【4】Compressed Sensing: Mathematical Foundations, Implementation, and Advanced Optimization Techniques
标题:压缩感知:数学基础、实现和高级优化技术
链接:https://arxiv.org/abs/2509.11550

作者:venson, Maryam Sabagh


【5】Online Optimization on Hadamard Manifolds: Curvature Independent Regret Bounds on Horospherically Convex Objectives
标题:Hadamard流形上的在线优化:时球凸目标上曲率无关的遗憾界
链接:https://arxiv.org/abs/2509.11236

作者:noglu, Shahin Shahrampour


【6】Foundational theory for optimal decision tree problems. I. Algorithmic and geometric foundations
标题:最优决策树问题的基础理论。I.数学和几何基础
链接:https://arxiv.org/abs/2509.11226

作者
备注:50 pages, 1 figure


【7】Harnessing Optimization Dynamics for Curvature-Informed Model Merging
标题:利用优化动力学进行曲线信息模型合并
链接:https://arxiv.org/abs/2509.11167

作者:hdavinia, Hamed Mahdavi, Niloofar Mireshghallah, Mehrdad Mahdavi


【8】DemandLens: Enhancing Forecast Accuracy Through Product-Specific Hyperparameter Optimization
标题:DemandLens:通过特定产品的超参数优化提高预测准确性
链接:https://arxiv.org/abs/2509.11085

作者:illai, M. I. Jawid Nazir
备注:10 pages, 12 figures, 3 tables. Accepted for publication in the proceedings of the 2025 Advances in Science and Engineering Technology International Conferences (ASET)


【9】BERT4beam: Large AI Model Enabled Generalized Beamforming Optimization
标题:BERT 4beam:大型人工智能模型实现广义束形成优化
链接:https://arxiv.org/abs/2509.11056

作者:, Yang Lu, Wei Chen, Bo Ai, Zhiguo Ding, Dusit Niyato


【10】Optimal message passing for molecular prediction is simple, attentive and spatial
标题:分子预测的最佳信息传递是简单、专注且空间的
链接:https://arxiv.org/abs/2509.10871

作者:astaneda-Leautaud, Rommie E. Amaro
备注:32 pages, 12 figures. Preprint submitted to RSC Drug Discovery


【11】FACTORS: Factorial Approximation for Complementary Two-factor Optimization with Risk-aware Scoring
标题:因素:具有风险意识评分的互补双因素优化的因式逼近
链接:https://arxiv.org/abs/2509.10825

作者:Kim, Wonjun Jeong, Gisung Oh
备注:43 pages, 8 figures


【12】Learning Concave Bid Shading Strategies in Online Auctions via Measure-valued Proximal Optimization
标题:通过测量值逼近优化学习在线拍卖中的凹凸投标着色策略
链接:https://arxiv.org/abs/2509.10693

作者:zi, Djordje Gligorijevic, Abhishek Halder


【13】Optimal Multimarginal Schrödinger Bridge: Minimum Spanning Tree over Measure-valued Vertices
标题:最佳多边缘薛定汉桥:测量值点上的最小生成树
链接:https://arxiv.org/abs/2509.10626

作者:. Bondar, Abhishek Halder


【14】Designing MacPherson Suspension Architectures using Bayesian Optimization
标题:使用Bayesian优化设计麦克弗森悬架架构
链接:https://arxiv.org/abs/2206.09022

作者:an Thomas, Jacopo Palandri, Mohsen Lakehal-ayat, Punarjay Chakravarty, Friedrich Wolf-Monheim, Matthew B. Blaschko
备注:15 pages, 16 figures


【15】Preconditioned subgradient method for composite optimization: overparameterization and fast convergence
标题:复合优化的预条件次梯度方法:过度参数化和快速收敛
链接:https://arxiv.org/abs/2509.11486

作者:z, Liwei Jiang, Abdel Ghani Labassi
备注:84 pages, 8 figures


【16】From PowerSGD to PowerSGD+: Low-Rank Gradient Compression for Distributed Optimization with Convergence Guarantees
标题:从PowerSingapore到PowerSingapore+:具有收敛保证的分布式优化的低等级梯度压缩
链接:https://arxiv.org/abs/2509.11254

作者: Xie, Chuyan Chen, Kun Yuan


【17】Convergence Rate in Nonlinear Two-Time-Scale Stochastic Approximation with State (Time)-Dependence
标题:具有状态(时间)依赖性的非线性双时间尺度随机逼近的收敛速度
链接:https://arxiv.org/abs/2509.11039

作者:, Yumin Xu, Ruixun Zhang
备注:23 pages


预测|估计(13篇)

【1】Multimodal Regression for Enzyme Turnover Rates Prediction
标题:酶周转率预测的多峰回归
链接:https://arxiv.org/abs/2509.11782

作者:, Cheng Tan, Siyuan Li, Jiangbin Zheng, Sizhe Qiu, Jun Xia, Stan Z. Li
备注:9 pages, 5 figures. This paper was withdrawn from the IJCAI 2025 proceedings due to the lack of participation in the conference and presentation


【2】Beyond Regularity: Modeling Chaotic Mobility Patterns for Next Location Prediction
标题:超越规则:为下一个位置预测建模混乱移动模式
链接:https://arxiv.org/abs/2509.11713

作者:, Yuhong Peng, Jiapeng Yu, Xiangyu Liu, Zeting Yan, Kang Lin, Weifeng Su, Bingqing Qu, Raymond Lee, Dingqi Yang
备注:12 pages, 5 figures


【3】Know What You Don't Know: Selective Prediction for Early Exit DNNs
标题:知道你不知道的:提前退出DNN的选择性预测
链接:https://arxiv.org/abs/2509.11520

作者:ti Bajpai, Manjesh Kumar Hanawal
备注:To appear in the the Fifth International Conference on AI ML Systems


【4】Machine Learning-Driven Predictive Resource Management in Complex Science Workflows
标题:复杂科学工作流程中机器学习驱动的预测资源管理
链接:https://arxiv.org/abs/2509.11512

作者:howdhury, Tadashi Maeno, Fatih Furkan Akman, Joseph Boudreau, Sankha Dutta, Shengyu Feng, Adolfy Hoisie, Kuan-Chieh Hsu, Raees Khan, Jaehyung Kim, Ozgur O. Kilic, Scott Klasky, Alexei Klimentov, Tatiana Korchuganova, Verena Ingrid Martinez Outschoorn, Paul Nilsson, David K. Park, Norbert Podhorszki, Yihui Ren, John Rembrandt Steele, Frédéric Suter, Sairam Sri Vatsavai, Torre Wenaus, Wei Yang, Yiming Yang, Shinjae Yoo


【5】BiLSTM-VHP: BiLSTM-Powered Network for Viral Host Prediction
标题:BiLSTM-VHP:用于病毒宿主预测的BiLSTM-VHP网络
链接:https://arxiv.org/abs/2509.11345

作者:ed Efat, Farzana Islam, Annajiat Alim Rasel, Munima Haque
备注:None


【6】Data-Efficient Ensemble Weather Forecasting with Diffusion Models
标题:使用扩散模型实现数据高效的综合天气预测
链接:https://arxiv.org/abs/2509.11047

作者:encia, Ziyang Liu, Justin Cui


【7】Hybrid Quantum Neural Networks for Efficient Protein-Ligand Binding Affinity Prediction
标题:用于高效蛋白质-配体结合亲和力预测的混合量子神经网络
链接:https://arxiv.org/abs/2509.11046

作者: Jeong, Kyeong-Hwan Moon, Won-Joo Hwang
备注:43 pages, 9 figures, and 12 tables. Accepted by EPJ Quantum Technology


【8】California Wildfire Inventory (CAWFI): An Extensive Dataset for Predictive Techniques based on Artificial Intelligence
标题:加州野火清单(CALDI):基于人工智能的预测技术的广泛数据集
链接:https://arxiv.org/abs/2509.11015

作者: Bhowmik, Youn Soo Jung, Juan Aguilera, Mary Prunicki, Kari Nadeau


【9】GTS_Forecaster: a novel deep learning based geodetic time series forecasting toolbox with python
标题:GTS_Forecaster:一个新颖的基于深度学习的大地测量时间序列预测工具箱,使用Python
链接:https://arxiv.org/abs/2509.10560

作者:iang, Xiaoxing He, Shengdao Wang, Jean-Philippe Montillet, Zhengkai Huang, Gaël Kermarrec, Shunqiang Hu, Yu Zhou, Jiahui Huang


【10】Multimodal Deep Learning for ATCO Command Lifecycle Modeling and Workload Prediction
标题:用于ATCO命令任务组建模和任务组预测的多模式深度学习
链接:https://arxiv.org/abs/2509.10522

作者:an


【11】Gradient Estimation Methods of Approximate Multipliers for High-Accuracy Retraining of Deep Learning Models
标题:用于深度学习模型高准确性重新训练的逼近乘数的梯度估计方法
链接:https://arxiv.org/abs/2509.10519

作者:g, Wayne Burleson, Giovanni De Micheli


【12】From Noise to Precision: A Diffusion-Driven Approach to Zero-Inflated Precipitation Prediction
标题:从噪声到精度:零膨胀降水预报的扩散驱动方法
链接:https://arxiv.org/abs/2509.10501

作者 :o, Jiuyong Li, Lin Liu, Thuc Duy Le, Xiongren Chen, Xiaojing Du, Jixue Liu, Yanchang Zhao, Yun Chen
备注:ECAI 2025 Accepted


【13】Moment Estimates and DeepRitz Methods on Learning Diffusion Systems with Non-gradient Drifts
标题:具有非梯度漂移的学习扩散系统的矩估计和DeepRitz方法
链接:https://arxiv.org/abs/2509.10495

作者:g, Chen-Chih Lai, Yubin Lu


其他神经网络|深度学习|模型|建模(46篇)

【1】Learning Neural Networks by Neuron Pursuit
标题:通过Neuron Pursuit学习神经网络
链接:https://arxiv.org/abs/2509.12154

作者:mar, Jarvis Haupt


【2】Do machine learning climate models work in changing climate dynamics?
标题:机器学习气候模型在改变气候动态中是否有效?
链接:https://arxiv.org/abs/2509.12147

作者:chita Agana Navarro, Geng Li, Theo Wolf, María Pérez-Ortiz
备注:8 pages, 2 figures


【3】A Time-Series Foundation Model by Universal Delay Embedding
标题:通用延迟嵌入的时间序列基础模型
链接:https://arxiv.org/abs/2509.12080

作者:ng, Peng Tao, Jifan Shi, Rui Bao, Rui Liu, Luonan Chen


【4】Imitation Learning as Return Distribution Matching
标题:模仿学习作为回报分布匹配
链接:https://arxiv.org/abs/2509.12026

作者:azzati, Alberto Maria Metelli


【5】Learning non-Markovian Dynamical Systems with Signature-based Encoders
标题:使用基于签名的编码器学习非马尔科夫动态系统
链接:https://arxiv.org/abs/2509.12022

作者:adeleix, Rémy Hosseinkhan-Boucher, Alena Shilova, Onofrio Semeraro, Lionel Mathelin
备注:Accepted at [ML-DE] Machine Learning Meets Differential Equations 2025 (ECAI 2025). To appear in Proceedings of Machine Learning Research (PMLR)


【6】Learning from Uncertain Similarity and Unlabeled Data
标题:从不确定的相似性和未标记的数据中学习
链接:https://arxiv.org/abs/2509.11984

作者: Zhongnian Li, Peng Ying, Xinzheng Xu


【7】Deep operator network for surrogate modeling of poroelasticity with random permeability fields
标题:基于深度算子网络的随机渗透率介质弹性模型
链接:https://arxiv.org/abs/2509.11966

作者:Park, Yeonjong Shin, Jinhyun Choo


【8】Data Fusion and Machine Learning for Ship Fuel Consumption Modelling - A Case of Bulk Carrier Vessel
标题:船舶油耗建模的数据融合和机器学习-以散货船为例
链接:https://arxiv.org/abs/2509.11750

作者:ohamed, Xiangyu Hu, Christian Hendricks
备注:44 pages, 6 figures, preprint version


【9】Analysing Python Machine Learning Notebooks with Moose
标题:用Moose分析Python机器学习笔记本
链接 :https://arxiv.org/abs/2509.11748

作者:gnard, Steven Costiou, Nicolas Anquetil, Anne Etien


【10】Fast and Interpretable Machine Learning Modelling of Atmospheric Molecular Clusters
标题:大气分子团簇的快速且可解释的机器学习建模
链接:https://arxiv.org/abs/2509.11728

作者:päläinen, Jakub Kubečka, Jonas Elm, Kai Puolamäki
备注:38 pages with 2 page appendix, 9 figures. The source code used in the paper are available at this https URL


【11】Disentangling Content from Style to Overcome Shortcut Learning: A Hybrid Generative-Discriminative Learning Framework
标题:将内容与风格区分开来以克服预设学习:混合生成歧视学习框架
链接:https://arxiv.org/abs/2509.11598

作者:, Sijun Dong, Xiaoliang Meng


【12】Learning Singularity-Encoded Green's Functions with Application to Iterative Methods
标题:奇异编码格林函数的学习及其在迭代方法中的应用
链接:https://arxiv.org/abs/2509.11580

作者:hengyan Li, Bowen Zheng, Lili Ju, Xuejun Xu


【13】CEMTM: Contextual Embedding-based Multimodal Topic Modeling
标题:CEMTM:基于上下文嵌入的多模式主题建模
链接:https://arxiv.org/abs/2509.11465

作者:in Abaskohi, Raymond Li, Chuyuan Li, Shafiq Joty, Giuseppe Carenini
备注:EMNLP 2025


【14】Learning to Optimize Multi-Objective Alignment Through Dynamic Reward Weighting
标题:学习通过动态奖励加权优化多目标一致
链接:https://arxiv.org/abs/2509.11452

作者:, Zilong Wang, Shiyang Li, Xin Liu, Changlong Yu, Qingyu Yin, Zhan Shi, Zixuan Zhang, Meng Jiang


【15】Framing AI System Benchmarking as a Learning Task: FlexBench and the Open MLPerf Dataset
标题:将人工智能系统基准测试作为一项学习任务:FlexBench和开放MLPerf数据集
链接:https://arxiv.org/abs/2509.11413

作者:ursin, Daniel Altunay


【16】Enhancing ML Models Interpretability for Credit Scoring
标题:增强ML模型对信用评分的解释性
链接:https://arxiv.org/abs/2509.11389

作者:artz, Qinling Wang, Fang Fang


【17】Efficient Single-Step Framework for Incremental Class Learning in Neural Networks
标题:神经网络中增量类学习的高效分步框架
链接:https://arxiv.org/abs/2509.11285

作者: Dopico-Castro, Oscar Fontenla-Romero, Bertha Guijarro-Berdiñas, Amparo Alonso-Betanzos


【18】PINGS: Physics-Informed Neural Network for Fast Generative Sampling
标题:PINGS:用于快速生成采样的物理信息神经网络
链接:https://arxiv.org/abs/2509.11284

作者:dani Prasha, Clavino Ourizqi Rachmadi, Muhamad Fauzan Ibnu Syahlan, Naufal Rahfi Anugerah, Nanda Garin Raditya, Putri Amelia, Sabrina Laila Mutiara, Hilman Syachr Ramadhan
备注:19 pages, 4 figures


【19】Revisiting Meter Tracking in Carnatic Music using Deep Learning Approaches
标题:使用深度学习方法重新审视狂欢音乐中的电表跟踪
链接:https://arxiv.org/abs/2509.11241

作者: Prabhu


【20】RoVerFly: Robust and Versatile Learning-based Control of Quadrotor Across Payload Configurations
标题:RoVerFly:跨有效负载切换器的四螺旋桨鲁棒且多功能的基于学习的控制
链接:https://arxiv.org/abs/2509.11149

作者:m, Jiaze Cai, Koushil Sreenath
备注:8 pages


【21】An Advanced Convolutional Neural Network for Bearing Fault Diagnosis under Limited Data
标题:有限数据下轴承故障诊断的高级卷积神经网络
链接:https://arxiv.org/abs/2509.11053

作者:un, Shuzhen Han, Ziqian Luan, Xinghao Qin, Jiao Yin, Zhanshan Zhao, Jinli Cao, Hua Wang


【22】FragmentGPT: A Unified GPT Model for Fragment Growing, Linking, and Merging in Molecular Design
标题:FragmentGPT:分子设计中用于片段生长、连接和合并的统一GPT模型
链接:https://arxiv.org/abs/2509.11044

作者:iu, Songhao Jiang, Qinan Huang, Tinson Xu, Ian Foster, Mengdi Wang, Hening Lin, Jinbo Xu, Rick Stevens


【23】Hardness, Structural Knowledge, and Opportunity: An Analytical Framework for Modular Performance Modeling
标题:硬度、结构知识和机会:模块化性能建模的分析框架
链接:https://arxiv.org/abs/2509.11000

作者:bi, Christian Kästner, Pooyan Jamshidi


【24】Decoupling Search and Learning in Neural Net Training
标题:神经网络训练中的搜索和学习脱钩
链接:https://arxiv.org/abs/2509.10973

作者:gesna, Samip Dahal


【25】Clarifying Model Transparency: Interpretability versus Explainability in Deep Learning with MNIST and IMDB Examples
标题:澄清模型透明度:使用MNIST和IMDB示例深度学习中的可解释性与可解释性
链接:https://arxiv.org/abs/2509.10929

作者:j
备注:5 pages, 2 figures, Accepted at ICICC 2026


【26】RSL-RL: A Learning Library for Robotics Research
标题:RSL-RL:机器人研究的学习库
链接:https://arxiv.org/abs/2509.10771

作者:chwarke, Mayank Mittal, Nikita Rudin, David Hoeller, Marco Hutter


【27】MinatoLoader: Accelerating Machine Learning Training Through Efficient Data Preprocessing
标题:MinatoPlayer:通过高效的数据预处理加速机器学习训练
链接:https://arxiv.org/abs/2509.10712

作者:aji, Stella Bitchebe, Ricardo Macedo, Oana Balmau
备注:Paper accepted at EuroSys 2026 (will be updated after the camera-ready)


【28】DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators
标题:DOSA:基于差异模型的DNN加速器单循环搜索
链接:https://arxiv.org/abs/2509.10702

作者:ong, Qijing Huang, Grace Dinh, Mahesh Subedar, Yakun Sophia Shao
备注:Published at MICRO 2023


【29】Situation Model of the Transport, Transport Emissions and Meteorological Conditions
标题:交通、交通排放和气象条件的情景模型
链接:https://arxiv.org/abs/2509.10541

作者: M. Svitek, A. Michalikova, M. Melicherik


【30】Variational Gaussian Mixture Manifold Models for Client-Specific Federated Personalization
标题:用于客户特定联邦个性化的变分高斯混合Manifold模型
链接:https://arxiv.org/abs/2509.10521

作者:la, Ismail Hossain, Md Jahangir Alam, Sajedul Talukder


【31】SOH-KLSTM: A Hybrid Kolmogorov-Arnold Network and LSTM Model for Enhanced Lithium-Ion Battery Health Monitoring
标题:SOH-KLSTM:用于增强锂离子电池健康状况监测的混合Kolmogorov-Arnold网络和LSTM模型
链接:https://arxiv.org/abs/2509.10496

作者:aya, Safa Ben Atitallah, Fatimah Alahmeda, Mohamed Abdelkadera, Maha Drissa, Fatma Abdelhadic, Anis Koubaaa


【32】Agentic DDQN-Based Scheduling for Licensed and Unlicensed Band Allocation in Sidelink Networks
标题:侧链网络中基于DDQN的授权和非授权频段分配的统计调度
链接:https://arxiv.org/abs/2509.06775

作者:hou, Pin-Qi Fu, Walid Saad, Li-Chun Wang
备注:6 pages, 3 figures, accepted by 2025 IEEE Globecom Workshops


【33】Information Entropy-Based Scheduling for Communication-Efficient Decentralized Learning
标题:基于信息熵的通信高效分散学习调度
链接:https://arxiv.org/abs/2507.17426

作者:h Nagar, Zheng Chen, Marios Kountouris, Photios A. Stavrou


【34】Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling
标题:学习可堆叠和可跳过的乐高积木,以实现高效、可重新配置和可变分辨率的扩散建模
链接:https://arxiv.org/abs/2310.06389

作者:Zheng, Zhendong Wang, Jianbo Yuan, Guanghan Ning, Pengcheng He, Quanzeng You, Hongxia Yang, Mingyuan Zhou


【35】The Morgan-Pitman Test of Equality of Variances and its Application to Machine Learning Model Evaluation and Selection
标题:方差相等的Morgan-Pitman检验及其在机器学习模型评估和选择中的应用
链接:https://arxiv.org/abs/2509.12185

作者:Arratia, Alejandra Cabaña, Ernesto Mordecki, Gerard Rovira-Parra
备注:29 pages, 4 figures


【36】Quantum Noise Tomography with Physics-Informed Neural Networks
标题:使用物理信息神经网络的量子噪音断层扫描
链接:https://arxiv.org/abs/2509.11911

作者:ulc
备注:6 pages, 3 figures, Machine Learning and the Physical Sciences Workshop at the 39th conference on Neural Information Processing Systems (NeurIPS)


【37】SpaPool: Soft Partition Assignment Pooling for__Graph Neural Networks
标题:SpaPool:__图神经网络的软分区分配池
链接:https://arxiv.org/abs/2509.11675

作者 :Govan (ISEA), Romane Scherrer (ISEA), Philippe Fournier-Viger, Nazha Selmaoui-Folcher (ISEA)
备注:None


【38】E-ROBOT: a dimension-free method for robust statistics and machine learning via Schrödinger bridge
标题:E-RObot:一种通过Schrödinger桥进行稳健统计和机器学习的无维方法
链接:https://arxiv.org/abs/2509.11532

作者: Vecchia, Hang Liu


【39】Quantum Architecture Search for Solving Quantum Machine Learning Tasks
标题:量子架构寻求解决量子机器学习任务
链接:https://arxiv.org/abs/2509.11198

作者:ölle, Simon Salfer, Tobias Rohe, Philipp Altmann, Claudia Linnhoff-Popien


【40】What is in a Price? Estimating Willingness-to-Pay with Bayesian Hierarchical Models
标题:什么是价格?利用Bayesian分层模型估计支付意愿
链接:https://arxiv.org/abs/2509.11089

作者:illai, Rajesh Kumar Chandrawat
备注:7 pages, 6 figures, 1 table. Accepted for publication in the proceedings of the 2025 Advances in Science and Engineering Technology International Conferences (ASET)


【41】Kernel-based Stochastic Approximation Framework for Nonlinear Operator Learning
标题:基于核的非线性运算符学习随机逼近框架
链接:https://arxiv.org/abs/2509.11070

作者:ng, Lei Shi
备注:34 pages, 3 figures


【42】Physics-informed neural network solves minimal surfaces in curved spacetime
标题:基于物理学的神经网络解决弯曲时空中的最小表面
链接:https://arxiv.org/abs/2509.10866

作者:imoto, Koichi Kyo, Masaki Murata, Gakuto Ogiwara, Norihiro Tanahashi
备注:40 pages, 17 figures, 3 tables


【43】On a Geometry of Interbrain Networks
标题:脑间网络的几何学
链接:https://arxiv.org/abs/2509.10650

作者:inrichs (1,2), Noah Guzmán (3), Melanie Weber (4) ((1) Embodied Cognitive Science Unit, Okinawa Institute of Science and Technology, Okinawa, Japan, (2) Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, (3) Independent scholar, (4) School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States)
备注:4 pages, 1 figure, submitted to NeurReps workshop 2025


【44】DeepSeasons: a Deep Learning scale-selecting approach to Seasonal Forecasts
标题:DeepSeasons:季节性预测的深度学习规模选择方法
链接:https://arxiv.org/abs/2509.10494

作者:a, G. G. Navarra


【45】Spectral Bottleneck in Deep Neural Networks: Noise is All You Need
标题:深度神经网络中的频谱瓶颈:噪音就是你所需要的一切
链接:https://arxiv.org/abs/2509.09719

作者:handravamsi, Dhanush V. Shenoy, Itay Zinn, Shimon Pisnoy, Steven H. Frankel


【46】Green Learning for STAR-RIS mmWave Systems with Implicit CSI
标题:具有隐式SI的STAR-RIS毫米波系统的绿色学习
链接:https://arxiv.org/abs/2509.06820

作者: Huang, Po-Heng Chou, Wan-Jen Huang, Walid Saad, C.-C. Jay Kuo
备注:6 pages, 4 figures, 2 tables, accepted by 2025 IEEE Globecom


其他(50篇)

【1】HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
标题:HoloGarment:野外服装的360°新颖视角合成
链接:https://arxiv.org/abs/2509.12187

作者:arras, Yingwei Li, Yasamin Jafarian, Ira Kemelmacher-Shlizerman


【2】All that structure matches does not glitter
标题:所有匹配的结构都不会闪闪发光
链接:https://arxiv.org/abs/2509.12178

作者:artirossyan, Thomas Egg, Philipp Hoellmer, George Karypis, Mark Transtrum, Adrian Roitberg, Mingjie Liu, Richard G. Hennig, Ellad B. Tadmor, Stefano Martiniani


【3】Deceptive Risk Minimization: Out-of-Distribution Generalization by Deceiving Distribution Shift Detectors
标题:欺骗性风险最小化:通过欺骗分布漂移检测器实现分布外概括
链接:https://arxiv.org/abs/2509.12081

作者:Majumdar


【4】Hi-DARTS: Hierarchical Dynamically Adapting Reinforcement Trading System
标题:Hi-DART:分层动态适应强化交易系统
链接:https://arxiv.org/abs/2509.12048

作者:ng, Heesu Kim, Hanbeen Hong
备注:Accepted paper at International Conference on ICT Convergence 2025


【5】Query-Focused Extractive Summarization for Sentiment Explanation
标题:以查询为中心的提取总结以进行情绪解释
链接:https://arxiv.org/abs/2509.11989

作者:btahij, Sylvie Ratté, Yazid Attabi, Maxime Dumas


【6】Examining the Relationship between Scientific Publishing Activity and Hype-Driven Financial Bubbles: A Comparison of the Dot-Com and AI Eras
标题:审视科学出版活动与炒作驱动的金融泡沫之间的关系:Dot-Com和AI时代的比较
链接:https://arxiv.org/abs/2509.11982

作者: Chelikavada, Casey C. Bennett


【7】TabStruct: Measuring Structural Fidelity of Tabular Data
标题:TabStruct:测量表格数据的结构保真度
链接:https://arxiv.org/abs/2509.11950

作者: Jiang, Nikola Simidjievski, Mateja Jamnik
备注:55 pages, 60 tables, 7 figures


【8】Transparent and Fair Profiling in Employment Services: Evidence from Switzerland
标题:就业服务透明公平的概况:来自瑞士的证据
链接:https://arxiv.org/abs/2509.11847

作者
备注:35 pages including appendix


【9】Synthetic vs. Real Training Data for Visual Navigation
标题:视觉导航的合成与真实训练数据
链接:https://arxiv.org/abs/2509.11791

作者:mela, Sasanka Kuruppu Arachchige, German F. Torres, Harry Edelman, Joni-Kristian Kämäräinen
备注:Presented at CoRL 2025 workshop on "Making Sense of Data in Robotics"


【10】User eXperience Perception Insights Dataset (UXPID): Synthetic User Feedback from Public Industrial Forums
标题:用户eXperience Percence Insights数据集(UXID):来自公共工业论坛的合成用户反馈
链接:https://arxiv.org/abs/2509.11777

作者:ulyabin, Jan Joosten, Choro Ulan uulu, Nuno Miguel Martins Pacheco, Fabian Ries, Filippos Petridis, Jan Bosch, Helena Holmström Olsson


【11】Stabilizing PINNs: A regularization scheme for PINN training to avoid unstable fixed points of dynamical systems
标题:稳定PINN:PINN训练的正规化方案,以避免动态系统的不稳定不稳定点
链接:https://arxiv.org/abs/2509.11768

作者:ic, Franz M. Rohrhofer, Bernhard C. Geiger
备注:8 pages, 3 figures


【12】Neural Audio Codecs for Prompt-Driven Universal Source Separation
标题:用于预算驱动通用源分离的神经音频编解码器
链接:https://arxiv.org/abs/2509.11717

作者:anerjee, Vipul Arora
备注:21 pages, 1 figure, pre-print, under review


【13】An Interventional Approach to Real-Time Disaster Assessment via Causal Attribution
标题:基于因果归因的实时灾害评估干预方法
链接:https://arxiv.org/abs/2509.11676

作者:shnubhatla, Alimohammad Beigi, Rui Heng Foo, Umang Goel, Ujun Jeong, Bohan Jiang, Adrienne Raglin, Huan Liu


【14】Assessing On-the-Ground Disaster Impact Using Online Data Sources
标题:使用在线数据源评估实地灾害影响
链接:https://arxiv.org/abs/2509.11634

作者:shnubhatla, Ujun Jeong, Bohan Jiang, Paras Sheth, Zhen Tan, Adrienne Raglin, Huan Liu


【15】Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check
标题:合理的安全调整:通过先检查确保越狱防御
链接:https://arxiv.org/abs/2509.11629

作者:ao, Xiaojun Xu, Bo Han, Hang Li


【16】AMLNet: A Knowledge-Based Multi-Agent Framework to Generate and Detect Realistic Money Laundering Transactions
标题:AMLNet:一个基于知识的多代理框架,用于生成和检测现实洗钱交易
链接:https://arxiv.org/abs/2509.11595

作者:a, Ernest Foo, Zahra Jadidi, MA Hakim Newton, Abdul Sattar


【17】RAPTOR: A Foundation Policy for Quadrotor Control
标题:RAPTOR:四螺旋桨控制的基础政策
链接:https://arxiv.org/abs/2509.11481

作者:hmann, Dario Albani, Giuseppe Loianno


【18】Long-time dynamics and universality of nonconvex gradient descent
标题:非凸梯度下降的长期动力学和普适性
链接:https://arxiv.org/abs/2509.11426

作者:n


【19】From Firewalls to Frontiers: AI Red-Teaming is a Domain-Specific Evolution of Cyber Red-Teaming
标题:从防火墙到前沿:人工智能红色团队是网络红色团队的特定领域进化
链接:https://arxiv.org/abs/2509.11398

作者:nha, Keltin Grimes, James Lucassen, Michael Feffer, Nathan VanHoudnos, Zhiwei Steven Wu, Hoda Heidari


【20】Decoding Musical Origins: Distinguishing Human and AI Composers
标题:解码音乐起源:区分人类和人工智能作曲家
链接:https://arxiv.org/abs/2509.11369

作者:g Tsai, Tzu-Wei Huang, Shao-Yu Wei, Guan-Wei Chen, Hung-Ying Chu, Yu-Cheng Lin


【21】Online Omniprediction with Long-Term Constraints
标题:具有长期约束的在线全方位预测
链接:https://arxiv.org/abs/2509.11357

作者:havod, Jiuyao Lu, Aaron Roth


【22】On Linear Mode Connectivity of Mixture-of-Experts Architectures
标题:专家混合架构的线性模式连通性
链接:https://arxiv.org/abs/2509.11348

作者:g Tran, Van Hoan Trinh, Khanh Vinh Bui, Tan M. Nguyen


【23】Opal: An Operator Algebra View of RLHF
标题:Opal:RL HF的运算子代数观点
链接:https://arxiv.org/abs/2509.11298

作者:aikwad
备注:11 pages main


【24】SelectMix: Enhancing Label Noise Robustness through Targeted Sample Mixing
标题:SelectMix:通过有针对性的样本混合增强标签噪音稳健性
链接:https://arxiv.org/abs/2509.11265

作者:u, Ling Li, Yao Lu, Qi Xuan, Zhaowei Zhu, Jiaheng Wei


【25】GK-SMOTE: A Hyperparameter-free Noise-Resilient Gaussian KDE-Based Oversampling Approach
标题:GK-SMOTE:一种无超参数、抗噪高斯ADE的过采样方法
链接:https://arxiv.org/abs/2509.11163

作者: Rahman Miraj, Hongyu Huang, Ting Yang, Jinxue Zhao, Nankun Mu, Xinyu Lei
备注:15 pages, 5 figures, 9th APWeb-WAIM joint International Conference on Web and Big Data (APWeb-WAIM 2025)


【26】Feature Space Topology Control via Hopkins Loss
标题:通过霍普金斯损失进行特征空间布局控制
链接:https://arxiv.org/abs/2509.11154

作者:aras, Manu Airaksinen
备注:Accepted for publication in Proc. IEEE ICTAI 2025, Athens, Greece


【27】Robustifying Diffusion-Denoised Smoothing Against Covariate Shift
标题:针对协变量漂移的Robustified扩散去噪平滑
链接:https://arxiv.org/abs/2509.10913

作者:atnia, Mostafa Tavassolipour, Babak Nadjar Araabi, Abdol-Hossein Vahabie


【28】Towards Automated Error Discovery: A Study in Conversational AI
标题:迈向自动错误发现:对话人工智能的研究
链接:https://arxiv.org/abs/2509.10833

作者:etrak, Thy Thy Tran, Iryna Gurevych
备注:Accepted to EMNLP 2025 main conference


【29】Contextual Budget Bandit for Food Rescue Volunteer Engagement
标题:食品救援志愿者参与的背景预算强盗
链接:https://arxiv.org/abs/2509.10777

作者:ng, Naveen Raman, Fei Fang, Zheyuan Ryan Shi


【30】Pluralistic Alignment for Healthcare: A Role-Driven Framework
标题:医疗保健多元化协调:角色驱动框架
链接:https://arxiv.org/abs/2509.10685

作者:ong, Anudeex Shetty, Chao Jia, Xuanrui Lin, Usman Naseem
备注:Accepted to EMNLP 2025 (Main Proceedings)


【31】pySigLib - Fast Signature-Based Computations on CPU and GPU
标题:pySigLib -在中央处理器和图形处理器上进行基于签名的快速计算
链接:https://arxiv.org/abs/2509.10613

作者:melev, Cristopher Salvi


【32】National Running Club Database: Assessing Collegiate Club Athletes' Cross Country Race Results
标题:国家跑步俱乐部数据库:评估大学俱乐部运动员的越野赛成绩
链接:https://arxiv.org/abs/2509.10600

作者:A. Karr Jr, Ben Darden, Nicholas Pell, Ryan M. Fryer, Kayla Ambrose, Evan Hall, Ramzi K. Bualuan, Nitesh V. Chawla


【33】Auditable Early Stopping for Agentic Routing: Ledger-Verified Run-Wise Certificates under Local DP
标题:可审核的公共路由早期停止:本地DP下的Ledger验证运行明智证书
链接:https://arxiv.org/abs/2509.10550

作者:hauri


【34】Contextuality, Holonomy and Discrete Fiber Bundles in Group-Valued Boltzmann Machines
标题:群值Boltzmann机中的上下文、完整性和离散纤维束
链接:https://arxiv.org/abs/2509.10536

作者:re Magnot


【35】Decoupling the "What" and "Where" With Polar Coordinate Positional Embeddings
链接:https://arxiv.org/abs/2509.10534

作者:alakrishnan, Robert Csordás, Jürgen Schmidhuber, Michael C. Mozer


【36】Mitigating Catastrophic Forgetting and Mode Collapse in Text-to-Image Diffusion via Latent Replay
标题:通过潜在重播减轻文本到图像扩散中的灾难性遗忘和模式崩溃
链接:https://arxiv.org/abs/2509.10529

作者


【37】Mixture-of-Clustered-Experts: Advancing Expert Specialization and Generalization in Instruction Tuning
标题:混合型专家:推进指令调优中的专家专业化和通用化
链接:https://arxiv.org/abs/2509.10513

作者:Eo, Jungjun Lee, Chanjun Park, Heuiseok Lim


【38】AttnBoost: Retail Supply Chain Sales Insights via Gradient Boosting Perspective
标题:AttnBoot:通过梯度提升视角洞察零售供应链销售
链接:https://arxiv.org/abs/2509.10506

作者: Hanyu Ma, Yiyang Wu, Xiaoli Ma, Yadi Liu, Ye Aung Moe, Weizheng Xie


【39】Identifiable Autoregressive Variational Autoencoders for Nonlinear and Nonstationary Spatio-Temporal Blind Source Separation
标题:用于非线性和非平稳时空盲源分离的可识别自回归变分自动编码器
链接:https://arxiv.org/abs/2509.11962

作者:lä, Klaus Nordhausen, Sara Taskinen


【40】ProteuS: A Generative Approach for Simulating Concept Drift in Financial Markets
标题:ProteuS:模拟金融市场概念漂移的生成方法
链接:https://arxiv.org/abs/2509.11844

作者: Suárez-Cetrulo, Alejandro Cervantes, David Quintana


【41】A Particle-Flow Algorithm for Free-Support Wasserstein Barycenters
标题:自由支持Wasserstein重心的粒子流算法
链接:https://arxiv.org/abs/2509.11435

作者:u


【42】Some Robustness Properties of Label Cleaning
标题:标签清洁的一些鲁棒性
链接:https://arxiv.org/abs/2509.11379

作者:g, John Duchi
备注:39 pages


【43】Investigating the Lottery Ticket Hypothesis for Variational Quantum Circuits
标题:研究变分量子电路的彩票假说
链接:https://arxiv.org/abs/2509.11190

作者:ölle, Leonhard Klingert, Julian Schönberger, Philipp Altmann, Tobias Rohe, Claudia Linnhoff-Popien


【44】Maximum diversity, weighting and invariants of time series
标题:时间序列的最大多样性、加权和不变量
链接:https://arxiv.org/abs/2509.11146

作者:g So


【45】Gradient Methods with Online Scaling Part II. Practical Aspects
标题:具有在线缩放的梯度方法第二部分。实际方面
链接:https://arxiv.org/abs/2509.11007

作者:u, Wenzhi Gao, Yinyu Ye, Madeleine Udell


【46】Variable Selection Using Relative Importance Rankings
标题:使用相对重要性排名选择变量
链接:https://arxiv.org/abs/2509.10853

作者:hang, Argon Chen
备注:26 pages, 9 figures


【47】Trial-Level Time-frequency EEG Desynchronization as a Neural Marker of Pain
标题:试验级时频脑电去同步化作为疼痛的神经标记物
链接:https://arxiv.org/abs/2509.10552

作者:co-Mora, A. Dierolf, J. Gonçalves, M. van Der Meulen
备注:7 pages, 3 Figures


【48】Biomarkers of brain diseases
标题:脑部疾病的生物标志物
链接:https://arxiv.org/abs/2509.10547

作者:lson, Arvind Kumar


【49】An Interpretable Ensemble Framework for Multi-Omics Dementia Biomarker Discovery Under HDLSS Conditions
标题:HDLSS条件下多组性痴呆生物标志物发现的可解释集合框架
链接:https://arxiv.org/abs/2509.10527

作者: Lee, Joonsung Kang
备注:11 pages, 1 figure


【50】YOLO-based Bearing Fault Diagnosis With Continuous Wavelet Transform
标题:基于YOLO的连续小波变换轴承故障诊断
链接:https://arxiv.org/abs/2509.03070

作者:hou, Wei-Lung Mao, Ru-Ping Lin
备注:5 pages, 2 figures, 2 tables, submitted to IEEE Sensors Letters


机器翻译由腾讯交互翻译提供,仅供参考

点击“阅读原文”获取带摘要的学术速递

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/186799
 
31 次点击