社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

你还在手写命令行功能?看这四个Python库如何自动实现

马哥Linux运维 • 7 年前 • 1116 次点击  


使用命令行程序有很多充满乐趣的功能,例如“提示工具包”,“命令行界面创建工具包“,“Pygments”和“模糊搜索”,我将介绍如何在几个 Python 库的帮助下实现这些功能。


 在本文结尾,读者应该很好地了解如何使用 Prompt Toolkit,Click(命令行界面创建工具包),Pygments 和 Fuzzy Finder 来实现一个易于使用的 REPL(交互式解释器)。


我计划用少于 20 行的 Python 代码中实现这一点。 


让我们开始,GO!


Python 提示工具包


我喜欢将这个库看作是像瑞士军刀那样集大成者的命令行应用程序,它可以替代 readline,curses 等等。 让我们来安装这个库并开始使用:


pip install prompt_toolkit


我们将从简单的 REPL 开始。 通常 REPL 将接受用户输入,执行操作并打印结果。 对于我们的例子,我们要构建一个“echo”REPL。 它只是打印出用户输入的内容:


交互式解释器


from prompt_toolkit import prompt

while 1:

    user_input = prompt('>')

    print(user_input)


这就是实现 REPL 所需要的。它可以读取用户输入并打印输入的内容。此代码段中使用的提示函数来自 prompt_toolkit 库;它是 readline 库的替代者。


历史记录


为了增强我们的REPL,我们可以添加历史命令:


from prompt_toolkit import prompt

from prompt_toolkit.history import FileHistory

while 1:

    user_input = prompt('>',

                        history=FileHistory('history.txt'),

                       )

    print(user_input )


我们刚刚向REPL添加了持久的历史记录。现在我们可以使用向上/向下箭头浏览历史记录,并使用 Ctrl + R 搜索历史。这符合命令行的基本习惯。


自动提示


我在第一部分中介绍的技巧之一是自动提示历史命令。(我们看到这个功能最先在 Fish shell中推出。)让我们把这个功能添加到我们的REPL中:


from prompt_toolkit import prompt

from prompt_toolkit.history import FileHistory

from prompt_toolkit.auto_suggest import AutoSuggestFromHistory

while 1:

    user_input = prompt('>',

                        history=FileHistory('history.txt'),

                        auto_suggest=AutoSuggestFromHistory(),

                       )

    print(user_input)


我们只需要在 prompt() API 调用中添加一个新的参数。现在我们的 REPL 已经可以支持类似 Fish Shell 那样的历史命令自动提示功能了。


自动补全


现在我们通过 Tab 增强来实现自动补全,当用户开始键入输入时,它弹出可能的建议。


我们的 REPL 是如何知道要给出什么提示的? 我们提供了一个可能名目提示的字典。


假设我们正在为 SQL 实现 REPL。我们可以使用 SQL 关键字存储我们的自动完成字典。让我们看看如何做到这一点:


from prompt_toolkit import prompt

from prompt_toolkit.history import FileHistory

from prompt_toolkit.auto_suggest import AutoSuggestFromHistory

from prompt_toolkit.contrib.completers import WordCompleter

SQLCompleter = WordCompleter(['select', 'from', 'insert', 'update', 'delete', 'drop'],

                             ignore_case=True)

while 1:

    user_input = prompt('SQL>',

                        history=FileHistory('history.txt'),

                        auto_suggest=AutoSuggestFromHistory(),

                        completer=SQLCompleter,

                        )

    print(user_input)


再次,我们只需使用一个名为 WordCompleter 的 prompt-toolkit 的内置例程,它将用户输入与可能提示的字典进行匹配,并提供一个列表。


我们现在有一个 REPL,它可以自动补全,fish 式的历史提示,以及历史命令的上下浏览。 所有这些都在不到 10 行的实际代码中。


命令行界面创建工具包


Click 是一个命令行创建工具包,可以方便地解析程序的命令行选项参数和参数。 本节不介绍如何作为参数解析器使用Click;取而代之的是我将研究一些 Click 库的其他功能的。


安装 click 很简单


pip install click


分页器


分页器是在 Unix 上用来一次性长输出显示的实用程序。分页器包括一些 less, more, most等。通过分页器显示命令不仅仅是友好的设计,而且也是需要的。


让我们进一步来看以上的例子。我们可以用 click.echo_via_pager() 来代替默认的 print() 语句。这将通过分页器将输出传递给 stdout,这和平台无关,因此可以在 Windows 或者 Unix 上运行。click.echo_via_pager() 将尝试用默认的分页器来输出,以便在需要的时候显示有颜色的代码:


from prompt_toolkit import prompt

from prompt_toolkit.history import FileHistory

from prompt_toolkit.auto_suggest import AutoSuggestFromHistory

from prompt_toolkit.contrib.completers import WordCompleter

import click

SQLCompleter = WordCompleter(['select', 'from', 'insert', 'update', 'delete', 'drop' ],

                             ignore_case=True)

while 1:

    user_input = prompt(u'SQL>',

                        history=FileHistory('history.txt'),

                        auto_suggest=AutoSuggestFromHistory(),

                        completer=SQLCompleter ,

                        )

    click.echo_via_pager(user_input)


编辑器


在我之前的文章中提到一个细节,就是当命令变得太复杂时就会回到编辑器,同样的 click 提供了一个简单的 API 可以来启动编辑器,并将编辑器中输入的文本返回到应用中:


import click

message = click.edit()


模糊搜索


模糊搜索是一种让用户通过最少的输入来缩小提示。同样有一个模糊搜索库,让我们安装这个库:


pip install fuzzyfinder


模糊搜索的API很简单,你传递进部分字符串和一个可能选择的列表,模糊搜索将返回一个新的列表,它和使用了按相关性排序的迷糊算法的字符串进行匹配,例如:


>>> from fuzzyfinder import fuzzyfinder

>>> suggestions = fuzzyfinder( 'abc', ['abcd', 'defabca', 'aagbec', 'xyz', 'qux'])

>>> list(suggestions)

['abcd', 'defabca', 'aagbec']


现在我们有了模糊搜索,我们将它加入到我们的 SQL 交互式解释器中。这样就定义了一个完成器,而不是 prompt-toolkit 附带的 WordCompleter。例如:


from prompt_toolkit import prompt

from prompt_toolkit.history import FileHistory

from prompt_toolkit.auto_suggest import AutoSuggestFromHistory

from prompt_toolkit.completion import Completer, Completion

import click

from fuzzyfinder import fuzzyfinder

SQLKeywords = ['select', 'from', 'insert', 'update', 'delete', 'drop']

class SQLCompleter(Completer):

    def get_completions (self, document, complete_event):

        word_before_cursor = document.get_word_before_cursor(WORD=True)

        matches = fuzzyfinder(word_before_cursor, SQLKeywords)

        for m in matches:

            yield Completion(m, start_position=-len(word_before_cursor))

while 1:

    user_input = prompt(u'SQL>',

                        history=FileHistory( 'history.txt'),

                        auto_suggest=AutoSuggestFromHistory(),

                        completer=SQLCompleter(),

                        )

    click.echo_via_pager(user_input)


Pygments


现在我们来给用户输入添加语法高亮显示。我们正在构建 SQL 交互式解释器,并且拥有彩色的 SQL 语句会很好。


Pygments 是一个语法高亮库,内置支持300多种语言。添加语法高亮使得应用程序变成彩色的,可以帮助用户在执行 SQL 之前发现一些例如打字错误或者无法匹配的引号和括号。


首先安装 Pygments


pip install pygments


让我们用 pygments 给我们的 SQL 交互式解释器添加颜色:


from prompt_toolkit import prompt

from prompt_toolkit.history import FileHistory

from prompt_toolkit.auto_suggest import AutoSuggestFromHistory

from prompt_toolkit.completion import Completer, Completion

import click

from fuzzyfinder import fuzzyfinder

from pygments.lexers.sql import SqlLexer

SQLKeywords = ['select', 'from', 'insert', 'update', 'delete', 'drop']

class SQLCompleter(Completer):

    def get_completions (self, document, complete_event):

        word_before_cursor = document.get_word_before_cursor(WORD=True)

        matches = fuzzyfinder(word_before_cursor, SQLKeywords)

        for m in matches:

            yield Completion(m, start_position=-len(word_before_cursor))

while 1:

    user_input = prompt(u'SQL>',

                        history=FileHistory( 'history.txt'),

                        auto_suggest=AutoSuggestFromHistory(),

                        completer=SQLCompleter(),

                        lexer=SqlLexer,

                        )

    click.echo_via_pager(user_input)


提示工具包适用于 Pygments 库。我们选择 Pygments 提供的 SqlLexer 并将其从提示工具包传递给 API 。现在所有的用户输入都会被当作 SQL 语句并且添上了颜色。


结论


我们本次成果的结论是通过创建一个强大的交互式解释器,拥有常见 shell 的所有功能,例如历史记录,键绑定,和很友好的自动完成,模糊搜索,分页器,编辑器和语法高亮的功能。我们用少于 20 个 python 语句实现了所有这些。


不是很容易吗?现在你还有什么理由写不出一个优秀的命令行应用程序呢,这里有一些可能有帮助的资源:


  • Click (命令行界面创建工具包)

  • 模糊搜索

  • 提示工具包

  • 请参阅 Prompt Toolkit 教程和 prompt-toolkit 中的例子

  • Pygments


2017年5月20日,Amjith Ramanujam在俄勒冈州波特兰市举办的美国 2017 PyCon 大会上做了名为《超棒的命令行工具》的演讲,你可以通过这个演讲了解更多内容。


编译作者: fighteryu

原文链接:http://python.jobbole.com/87830/




————广告时间————

马哥教育2017年Python自动化运维开发实战班,马哥联合BAT、豆瓣等一线互联网Python开发达人,根据目前企业需求的Python开发人才进行了深度定制,加入了大量一线互联网公司:大众点评、饿了么、腾讯等生产环境真是项目,课程由浅入深,从Python基础到Python高级,让你融汇贯通Python基础理论,手把手教学让你具备Python自动化开发需要的前端界面开发、Web框架、大监控系统、CMDB系统、认证堡垒机、自动化流程平台六大实战能力,让你从0开始蜕变成Hold住年薪20万的Python自动化开发人才

扫描二维码领取学习资料

更多Python好文请点击【阅读原文】哦

↓↓↓


今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/S91bFrQOfh
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/3764
 
1116 次点击