Py学习  »  MongoDB

内部父数组和内部数组的计数-MongoDB[重复]

Anoop Sankar • 5 年前 • 1462 次点击  

我正在使用asp.net core 2.0web api开发一个软件。我需要计算集合中某些字段的计数。 我在MongoDB中收集的数据如下。我需要找到我的收藏中有多少标签和多少传感器。一个特定的端点有多个标记,每个标记有多个传感器。

{
    "_id" : ObjectId("5aef51dfaf42ea1b70d0c4db"),    
    "EndpointId" : "89799bcc-e86f-4c8a-b340-8b5ed53caf83",    
    "DateTime" : ISODate("2018-05-06T19:05:02.666Z"),
    "Url" : "test",
    "Tags" : [ 
        {
            "Uid" : "C1:3D:CA:D4:45:11",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:02.666Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-95")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-59")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("11.029802536740132")
                }, 
                {
                    "Type" : 4,
                    "Value" : NumberDecimal("27.25")
                }, 
                {
                    "Type" : 6,
                    "Value" : NumberDecimal("2924")
                }
            ]
        },         
        {
            "Uid" : "C1:3D:CA:D4:45:11",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:02.666Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-95")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-59")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("11.413037961112279")
                }, 
                {
                    "Type" : 4,
                    "Value" : NumberDecimal("27.25")
                }, 
                {
                    "Type" : 6,
                    "Value" : NumberDecimal("2924")
                }
            ]
        },          
        {
            "Uid" : "E5:FA:2A:35:AF:DD",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:02.666Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-97")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-58")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("10.171658037099185")
                }
            ]
        }
    ]
}

/* 2 */
{
    "_id" : ObjectId("5aef51e0af42ea1b70d0c4dc"),    
    "EndpointId" : "89799bcc-e86f-4c8a-b340-8b5ed53caf83",    
    "Url" : "test",
    "Tags" : [ 
        {
            "Uid" : "E2:02:00:18:DA:40",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:04.574Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-98")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-65")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("7.845424441900629")
                }, 
                {
                    "Type" : 4,
                    "Value" : NumberDecimal("0.0")
                }, 
                {
                    "Type" : 6,
                    "Value" : NumberDecimal("3012")
                }
            ]
        }, 
        {
            "Uid" : "12:3B:6A:1A:B7:F9",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:04.574Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-95")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-59")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("12.939770381907275")
                }
            ]
        }
    ]
}

我想计算与特定endpointid相关的标记和传感器的计数。如何在MongoDB中编写查询?

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/43351
 
1462 次点击  
文章 [ 1 ]  |  最新文章 5 年前
Neil Lunn
Reply   •   1 楼
Neil Lunn    7 年前

"EndpointId" 每一个 "Uid" 在里面 "Tags" 以及 "Type" 在里面 "Sensors" 将是:

db.collection.aggregate([
  { "$unwind": "$Tags" },
  { "$unwind": "$Tags.Sensors" },
  { "$group": {
    "_id": {
      "EndpointId": "$EndpointId",
      "Uid": "$Tags.Uid",
      "Type": "$Tags.Sensors.Type"
    },
  }},
  { "$group": {
    "_id": {
      "EndpointId": "$_id.EndpointId",
      "Uid": "$_id.Uid",
    },
    "count": { "$sum": 1 }
  }},
  { "$group": {
    "_id": "$_id.EndpointId",
    "tagCount": { "$sum": 1 },
    "sensorCount": { "$sum": "$count" }
  }}
])

或者对C

    var results = collection.AsQueryable()
      .SelectMany(p => p.Tags, (p, tag) => new
        {
          EndpointId = p.EndpointId,
          Uid = tag.Uid,
          Sensors = tag.Sensors
        }
      )
      .SelectMany(p => p.Sensors, (p, sensor) => new
        {
          EndpointId = p.EndpointId,
          Uid = p.Uid,
          Type = sensor.Type
        }
      )
      .GroupBy(p => new { EndpointId = p.EndpointId, Uid = p.Uid, Type = p.Type })
      .GroupBy(p => new { EndpointId = p.Key.EndpointId, Uid = p.Key.Uid },
        (k, s) => new { Key = k, count = s.Count() }
      )
      .GroupBy(p => p.Key.EndpointId,
        (k, s) => new
        {
          EndpointId = k,
          tagCount = s.Count(),
          sensorCount = s.Sum(x => x.count)
        }
      );

哪些输出:

{
  "EndpointId" : "89799bcc-e86f-4c8a-b340-8b5ed53caf83",
  "tagCount" : 4,
  "sensorCount" : 16
}

尽管考虑到所呈现的文档对于 “UID” 无论如何 $reduce 文件中的金额:

db.collection.aggregate([
  { "$group": {
    "_id": "$EndpointId",
    "tags": {
      "$sum": {
        "$size": { "$setUnion": ["$Tags.Uid",[]] }
      }
    },
    "sensors": {
      "$sum": {
        "$sum": {
          "$map": {
            "input": { "$setUnion": ["$Tags.Uid",[]] },
            "as": "tag",
            "in": {
              "$size": {
                "$reduce": {
                  "input": {
                    "$filter": {
                      "input": {
                        "$map": {
                          "input": "$Tags",
                          "in": {
                            "Uid": "$$this.Uid",
                            "Type": "$$this.Sensors.Type"
                          }
                        }
                      },
                      "cond": { "$eq": [ "$$this.Uid", "$$tag" ] }
                    }
                  },
                  "initialValue": [],
                  "in": { "$setUnion": [ "$$value", "$$this.Type" ] }
                }
              }
            }
          }
        }
      }
    }
  }}
])

但是,该语句并不能很好地映射到linq,因此需要使用 BsonDocument 接口为语句生成bson。当然,同样的 “UID” 值“did”实际上出现在集合中的多个文档中,然后 $unwind 语句是必要的,以便从数组项中跨文档将这些语句“组合”在一起。


原件

你可以通过获取 $size 数组的。对于外部数组,这只是应用于文档中数组的字段路径,对于需要处理的内部数组项 $map 为了处理每一个 “标签” 元素,然后获取 美元大小 属于 “传感器” $sum 要减少到总计数的结果数组。

每份文件应:

db.collection.aggregate([
  { "$project": {
    "tags": { "$size": "$Tags" },
    "sensors": {
      "$sum": {
        "$map": {
          "input": "$Tags",
           "in": { "$size": "$$this.Sensors" }
        }
      }
    }
  }}
])

在C代码中分配给类的位置如下:

collection.AsQueryable()
  .Select(p => new
    {
      tags = p.Tags.Count(),
      sensors = p.Tags.Select(x => x.Sensors.Count()).Sum()
    }
  );

如果他们回来了:

{ "tags" : 3, "sensors" : 13 }
{ "tags" : 2, "sensors" : 8 }

你想去哪里 $group 结果,例如在整个集合中,您将执行以下操作:

db.collection.aggregate([
  /* The shell would use $match for "query" conditions */
  //{ "$match": { "EndpointId": "89799bcc-e86f-4c8a-b340-8b5ed53caf83" } },
  { "$group": {
    "_id": null,
    "tags": { "$sum": { "$size": "$Tags" } },
    "sensors": {
      "$sum": {
        "$sum": {
          "$map": {
            "input": "$Tags",
             "in": { "$size": "$$this.Sensors" }
          }
        }
      }
    }
  }}
])

对于您的C代码,如前所示:

collection.AsQueryable()
  .GroupBy(p => "", (k,s) => new
    {
      tags = s.Sum(p => p.Tags.Count()),
      sensors = s.Sum(p => p.Tags.Select(x => x.Sensors.Count()).Sum())
    }
  );

如果他们回来了:

{ "tags" : 5, "sensors" : 21 }

为了 "EndpointId ,则只需使用该字段作为分组键,而不是 null 0 当它被C驱动程序映射应用时:

collection.AsQueryable()
  /* Use the Where if you want a query to match only those documents */
  //.Where(p => p.EndpointId == "89799bcc-e86f-4c8a-b340-8b5ed53caf83")            
  .GroupBy(p => p.EndpointId, (k,s) => new
    {
      tags = s.Sum(p => p.Tags.Count()),
      sensors = s.Sum(p => p.Tags.Select(x => x.Sensors.Count()).Sum())
    }
  );

当然,这是您提供给我们的两份文件样本的总和:

{“标签”:5,“传感器”:21}

所以这些都是非常简单的结果,一旦习惯了语法,就可以简单地执行管道。

我建议你熟悉一下 Aggregation Operators 从核心文档中,当然还有 "LINQ Cheat Sheet" 的表达式及其使用映射。

也见将军 LINQ Reference 在C驱动程序参考中,了解如何将其映射到MongoDB的聚合框架的其他示例。