社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

我学Python都看了哪些书(第二版)

数据分析1480 • 5 年前 • 381 次点击  

前言


       2017年11月29日,自己曾在公众号内写过一篇《聊聊我的R语言学习路径和感受》的文章,受到了很多朋友的关注和赞扬,同时,也有其他公众号在帮忙转载。当然,也有很多朋友也给我留言,能不能聊聊关于Python的学习建议,时隔一个多月,今天抽空再来谈谈自己学习Python的路程吧。

       准确的说自己是从2014年的9月份开始接触Python的,那会由于工作需要,硬着头皮开始学习Python,不怕各位笑话,我的第一本Python启蒙书籍《与孩子一起学编程》。这本书真的非常通俗易懂,从什么是变量、基本的数学运算、数据类型到复杂一点的控制流语法和应用,再到Python的几种数据结构讲解等等,同时也会将这些基础知识拼起来写一个和小孩一起玩的游戏(尽管自己对游戏没有什么兴趣,但还是照书抄代码了)。

       说这段经历的目的是想说明,你必须得明确自己学习Python的目的是什么,因为对于一个初学者来说,经常向度娘或周边的朋友询问:“学习Python,有什么书可以推荐吗?”如果不搞清楚自己学习的目的,那这个问题其实是白问的。因为Python能做的事实在是太多了,对于这个问题,你会得到五花八门的答案,此时你也会疑惑,这么多可供选择的初级书,我该选择哪一本呢?所以,首先问自己,我学习Python是用它来搞运维?还是用它来做开发?还是用它来完成你的数据分析与挖掘?很显然,对于我来说,我应该是用它帮助我完成数据分析或挖掘的工作任务。

       如果你对数据分析或挖掘感兴趣,那这篇文章也许对你会有一点帮助,接下来就跟大家分享一下自己学习Python的一点点经验,内容会涵盖Python基础储备、Python数据分析、Python数据可视化和Python数据挖掘几个部分。

Python基础储备


       不管你学习什么新东西,都必须牢记一条,基础必须夯实牢因为基础能够决定你能走多远。所以,学习Python也需要你静下心来好好的掌握一下它的基础知识,如基本的数据结构(列表、元组、字典)及对应的方法、字符串处理方法、控制流和自定义函数、正则表达式、文件处理、异常处理、类的创建等等。关于这部分的学习,有很多参考书可供选择,如:

《Python简明教程》:这是一本只有100页左右的小册子,你可以迅速的浏览并敲一遍代码,或多或少都会提升你的Python基础能力;

《笨方法学Python》:这本书同样非常的短小精悍,全书是以习题的形式让读者掌握有关Python的基础知识,里面的代码建议读者能够敲一遍;

《Python基础教程》:这本书的内容非常的详实,几乎覆盖了Python的所有基础知识点,当然有些章节你也并不需要都去看,读者可以根据自己的情况,有针对性的挑着看;

       关于Python基础储备方面的书籍我就推荐这三本,书不在多,只要你用心看完一本书就是对自己的挑战,希望读者能够记住:基础决定你能走多远这句话。

Python数据分析


       当你掌握了有关Python的基础知识后,你就可以尝试着去学习Python在数据分析和挖掘中的应用了。众所周知,随着大数据时代的到来,数据分析显得尤其重要和火热,那么相应的关于Python做数据分析的第三方模块也越来越多,例如numpy用于数值计算、随机数生成等功能、pandas用于数据的清洗和整理等功能、statsmodels和scipy用于统计建模和各种假设检验等功能、matplotlib用于数据数据可视化、sklearn用于常见的数据挖掘算法的落地等。目前市面上也有很多关于Python数据分析的书本,例如:

《利用Python进行数据分析》:太经典了,作者就是创建pandas模块的大牛,书中详细讲解了有关numpy、pandas、matplotlib等模块的常用函数技巧,同时也结合了一些案例加以说明,书末也简单介绍了Python在时间序列问题上的处理和金融与经济方面的应用;

《Python金融大数据分析》:如果你对金融比较感兴趣的话,这本书是一个不错的选择。不仅讲了有关金融方面的理论知识和应用案例,也同样讲解了很多基础知识,如常见的数据结构、数据可视化操作、数据操作、数学基础、统计学基础等;

《Python数据分析与挖掘实战》:这是一本很棒的实战书籍,结合Python这个工具讲解了有关数据分析过程中的数据探索和数据预处理,同时,也介绍了很多数据分析和挖掘的案例,一步步带着读者完成每一个实战项目的操作。例如,窃电行为识别、家电用户行为分析、电商用户行为分析等;

Python数据分析》:这本书可以作为《利用Python进行数据分析》的补充版,处理介绍numpy、pandas、matplotlib等模块的知识与应用,还谈及了文本挖掘与机器学习部分(但这部分内容也不是特别难),所以我觉得这是一本非常适合Python新手的书籍;

Python数据分析与数据化运营》:一本524页的厚书,覆盖的内容非常丰富,几乎涉及了数据分析和挖掘的所有知识点。这本书的最大亮点是基于各种运营场景,介绍数据分析对运营的帮助,是一本名副其实的数据化运营的书籍;

       有关更多的类似numpy、pandas数据处理模块的讲解,读者可以自行查阅官网的文档说明。

Python数据可视化


       数据可视化的目的就是让读数据的人留下直观而深刻的记忆,这也是数据分析过程中必备的技能,一方面方便自己和读者发现数据的规律和关系,另一方面也是数据的一种展现方式。关于专门讲Python可视化的书,在市面上并不多,这里就跟大家分享一本我认为非常棒的书吧:

《Python数据可视化编程实战》:本书涵盖了基本的统计图形,如条形图、饼图、直方图、箱线图、面积图、散点图等,还讲解了有关作图的细节,如坐标轴、刻度值、图例的处理等,除此,还单独将3D图作为一个章节进行讲解。如果你想了解关于地图的绘制,书中也有案例,只不过没有提到中国地图的绘制。

       更多有关matplotlib模块的内容学习,读者可以查看官网的文档说明。关于数据可视化的实现,除了matplotlib这个模块,还有seaborn模块、bokeh模块、plotly模块等,同样你可以通过搜索关键词,到其对应的官网查看更多的帮助文档。

Python数据挖掘


       数据挖掘部分相对而言要难一些,光实现数据挖掘的操作还不够,还需要一定的数学功底,正如吴恩达所说,数学只是机器学习的基础。对于一般常用的预测模型、分类模型和聚类模型都可以通过Python的sklearn模块实现,所以实操不难。重要的是理论知识的掌握,这里介绍几本理论方面的书:

《数据挖掘导论》:非常适合数据挖掘入门,内容详实,讲解的条理也很清晰;

《数据挖掘概念与技术》:同样是一本不可多得的好书,首先介绍挖掘方法的概念和理论知识,然后通过某些数据集来完成手工计算的过程,对于读者来说,具有代入感,学习起来也会比较有劲;

《统计学习方法》:是一本完全偏理论的书籍,包含了很多算法的推理过程,如knn算法、贝叶斯算法、决策树算法、支持向量机算法等,这些推理对读者的数学知识要求比较高;

       书虽好,但都需要一定的数学基础才能看上面的内容,关于数学基础大学里学的高等数学、线性代数、概率论、统计学等基本上就够用了。如果觉得自己不够扎实,赶快去充充电哦。

       再来推荐三本使用Python进行数据挖掘实战方面的书籍:

《Python数据挖掘入门与实践》:该书的译者尽然是英语专业学生,是不是惊呆了!全书通篇都是讲解有关数据挖掘的实战案例,如使用决策树预测获胜球队、使用神经网络破解验证码、使用k均值完成新闻语料的分类等等,基本是都是基于sklearn这个模块来实现的;

《机器学习实战》:这本书对读者的编程技能要求比较高,几乎所有的挖掘算法都是一个重复造轮子的过程(可能不太适合调包侠),我觉得该书的最大优点就是加强对算法的理解,一遍讲解算法,一遍通过基本的编程将算法进行重现;

Python大战机器学习》:这是一本阿里的算法工程师编写的书籍,全书一共包含13个章节,涉及到数据挖掘的所有常规模型,如线性模型、树模型、贝叶斯模型、支持向量机、神经网络、聚类模型等。本书的每一个章节都从两方面介绍,一方面是模型的理论说明,另一方面则是介绍sklearn模块下对应的代码方案。

结语


       OK,关于个人学习Python的书籍推荐就分享到这里,如果你需要上面所提及的书籍,电子版基本上都整理好了,只需关注lsxxx2011”并回复数字“003”就可获得下载链接。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/48169
 
381 次点击