import numpy as npa = np.ones(5)b = torch.from_numpy(a)print(a,b)
a += 1print(a,b)b += 1print(a,b)
1.5 GPU运算
# let us run this cell only if CUDA is available# We will use ``torch.device`` objects to move tensors in and out of GPUif torch.cuda.is_available(): device = torch.device("cuda") # a CUDA device object y = torch.ones_like(x, device=device) # directly create a tensor on GPU x = x.to(device) # or just use strings ``.to("cuda")`` z = x + y print(z) print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together!
import torchimport torch.nn as nnimport torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net,self).__init__() # 1 input image channel, 6 output channels, 3x3 square convolution # kernel self.conv1 = nn.Conv2d(1,6,3) self.conv2 = nn.Conv2d(6,16,3) # an affine operation: y = Wx + b self.fc1 = nn.Linear(16*6*6,120) # 6*6 from image dimension self.fc2 = nn.Linear(120,84) self.fc3 = nn.Linear(84,10) def forward(self,x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)),(2,2)) # CLASStorch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False) x = F.max_pool2d(F.relu(self.conv2(x)),2) x = x.view(-1,self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self,x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s print(num_features) return num_features net = Net()print(net)
output = net(input)target = torch.randn(10) # a dummy target, for exampletarget = target.view(-1,1) # # make it the same shape as outputcriterion = nn.MSELoss() loss = criterion(output,target)print(loss)
import torch.optim as optim # create your optimizeroptimizer = optim.SGD(net.parameters(),lr = 0.01) # in your training loop:optimizer.zero_grad() # zero the gradient buffersoutput = net(input)loss = criterion(output,target)loss.backward()optimizer.step()