
高考刚结束,之前不少人让我推荐专业,对理工科的同学,我一般会说,如果你没有特别执着的专业方向,就报数学系好了。
其实小时候我也想不明白学好数学有什么用,直到后来学了工程数学之后,才意识到原来数学可以应用在各类工程中,尤其对技术人来说,学好线性代数就尤为重要。
为什么?线性代数是数值代数的数学理论前提,数值代数通常也称为矩阵计算,是以计算机为工具来求解各种数学模型,是特别为计算机上进行线性代数计算服务的,所以,计算机科学本身就离不开线性代数的知识。
作为数学中最抽象的一门课,线性代数的应用十分广泛,是计算机很多领域的基础。比如,如何让 3D 图形显示到二维屏幕上?这是线性代数在图形图像学中的应用。如何提高密码被破译的难度?这个密码学问题,用线性代数中的有限向量空间也可以很好地解决。
还有一个众所周知非常重要的应用领域 —— 机器学习。在我看来,机器学习的本质就是求解线性方程组。
很多人都觉得,机器学习很难,其实我感觉,机器学习本身没有多大难度,因为经过多年的积累后,很多规则已经成型了。对于我们来说真正难的,是机器学习背后的算法所涉及的基础数学原理,包括向量、矩阵等等。
我们可以来看下机器学习的整个知识体系。
就单从数学角度来看,这个覆盖范围已经很广了,但你看,最最核心的还是线性代数,也就是最本质的向量和矩阵。所以说,学好线性代数才是最最关键的。
有些同学可能会说,线性代数对我好像没用,是的,如果你工作中除了 CRUD 就是处理各类字符串、链表、Hash 表,高中甚至初中数学就足够了。但只要你想「再往上走一步」,做任何一点带有创新性的技术,数学问题,往往会成为你的绊脚石。
线代这么难,怎么才能更轻松地学懂、会用呢?
我当时学习的时候啃了不少线性代数相关的书籍,但大都是直接讲应用实践,再穿插了一些数学知识,从实践的角度切入,虽然入门容易,但缺点也显而易见的。这样学下来,只知道固定的应用场景,死记硬背几个知识点容易,但是数学底层知识不牢固,当真正遇到问题的时候,也只能干瞪眼了。
所以在技术领域里,我更推荐从底层基础概念开始,一步步往上走,一直到应用实践。
但是我寻寻觅觅一直没有找到这样的课程,直到我看到了极客时间推出了《重学线性代数》,通过自下而上的方式,以通俗易懂的语言,带你构建完整实用的线代知识框架,详解 9 个机器学习中必备的线代核心点,并且,还会讲到线性代数在计算机很多其他领域的基础和应用,比如:图形图像、密码学,等等,我确定,这就是我要找的线性代数的学习专栏,真正地能让大家掌握工程应用中的线代知识。

作者是谁?
朱维刚,毕埃慕(BIM)首席战略官、副总裁,前阿里云资深产品与技术专家,微软人工智能金牌讲师,长期专注于云计算和大数据领域。拥有多年海外工作经验,自2008年开始从事云计算和大数据相关工作,曾带领国际团队主导比利时电信云 BeCloud,以及新加坡政府云 G-Cloud的建设。
他是如何讲解线性代数?
为了让大家能更加系统地学习线性代数,作者将内容打磨成 2 个模板:
第一个模块是基础篇,讲的是线性代数的理论基础。
第二个模块是应用篇,作者结合线性代数的基础理论,讲解线性代数在计算机科学中的应用。
有了之前的基础后,你再来看应用实践就会觉得简单很多。在每一讲最后都特意设计了线性代数练习场,带你通过练习来巩固学到的知识点。
所以从整体来说,“重学线性代数”可以满足你四个层次的需求:
话不多说,大家自己看看目录吧 👇

点击「阅读原文」可直接购买,记得使用优惠口令「xiandai66」,以最优惠价 ¥49 入手