社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

还纠结选机器学习还是深度学习?看完你就有数了

优达学城Udacity • 7 年前 • 745 次点击  

导语:「机器学习」还是「深度学习」,哪个更适合我呢?

文/ Christine Taylor

译/ 李大狗 

编辑/ 熄灯了


大哥你好,我是来学「人工智能」的。但是,啥是「深度学习」?啥是「机器学习」?「深度学习」和「机器学习」有啥关系?我究竟该学「深度学习」还是「机器学习」? 

在入门时,很多人都会被这几个问题绕晕了。但相信我,看完这篇文章,所有的这些疑惑都会被解决!

搞懂概念


首先,我们来搞懂「人工智能」、「机器学习」和「深度学习」这三个概念和概念之间的联系。 


一、什么是人工智能?

人工智能是通过软件和硬件来「模拟」和「模仿」智能人类行为的研究。大家记得《终结者》里的天网和T-800吗?它们就是「人工智能」哦! 

二、什么是机器学习?

机器学习是AI的一个子领域,它通过算法将AI概念应用于计算系统。计算机识别数据模式并根据数据模式采取行动,随着时间的推移学习提高其准确性而无需明确的编程。机器学习的背后是预测编码,聚类和视觉热图等分析方法。我们打开某宝、某东时的购物推荐就是机器学习的一个应用啦~ 

三、什么是深度学习?

深度学习是机器学习的子领域,是人工神经网络的另一个名字。深度学习网络模仿人类大脑感知与组织的方式,根据数据输入做出决策。AlphaGo就是我们最耳熟能详的深度学习的应用!此外,虽然现在「天网」还没出现,但是「天网」的基础,深度学习已经出现啦!

简而言之,机器学习是人工智能的一部分,深度学习是机器学习的一部分,这就是三者的关系。

「机器学习」vs. 「深度学习」,我应该学哪个?



刚才说了,深度学习是机器学习的一部分,它们的关系就像「扳手」和「整套工具」 的关系。因此,如果你想搞个应用,你更应该先学机器学习,了解一下整套工具。而是否要学习深度学习(扳手)要仔细考虑考虑——毕竟,深度学习是一个在发展中的技术,并且用花掉你大把的钱!(买显卡……)

话说回来,深度学习虽然仍在发展中,但已经有很多深度学习的产品已经进入市场了,假以时日,深度学习的应用将会变得更加广泛,这个扳手的作用将会越来越大。


深度剖析


现在,让我们分别来了解一下「机器学习」和「深度学习」的知识和它们的应用案例吧!

一、机器学习详解

机器学习通过算法分析数据,从结果中进行学习,然后将「学习后的算法」用来做出决策或进行预测,例子有我们熟悉的聚类、贝叶斯网络和视觉数据映射等等。 

机器学习可以分成两种类型——「有监督学习」和「无监督学习」。 


监督式学习依赖于人为生成的「数据种子集」。这些「数据种子集」调教程序它该如何「看待」数据。 

  • 举个监督室学习的例子,我有一套电子邮件数据,我给每一封邮件都打上「垃圾邮件」或「非垃圾邮件」的标签,那么,这套数据便是「数据种子集」,程序可以利用这套数据种子集进行训练,从而得到一个判断垃圾邮件的模型。

无监督学习是这样的——观察数据中的模式,将它们和其他的数据比较或进行搜索查询。随着数据集的增长、更多模式的浮现,机器学习算法不断「自我优化」。无监督学习的例子有聚类、概念搜索和接近重复数据删除等等。 

  • 再以邮件为例,我有一套电子邮件数据,但是我并没有人为的给它「打标签」,而是直接进行聚类,程序会自动的分出「垃圾邮件」和「非垃圾邮件」。

机器学习的「基础设施」差异很大。单一系统可以处理有限的数据,而大型系统则包含数十台服务器和大规模并行处理(MPP)架构,用于跨多个数据源的海量数据。

二、深度学习详解

深度学习,又叫人工神经网络,和其它所有机器学习一样都是基于算法。然而它并非像「数据分类」一样根据任务选择的算法,而是模仿人类大脑结构与运算过程——识别非结构化输入的数据,输出精确地行为和决策。 

机器学习可以是监督的也可以是非监督的,这意味着大型神经网络可以接受「标签化输入」,但并不需要。当一个神经网络处理输入时,它通过输入数据和输出数据创造层,这种级别的深度学习让神经网络从原始数据中「自动抽取特征」而无需人工来贴标签。 


神经网络由大量被称为神经元的简单处理器构成,处理器用数学公式模仿人类大脑中的神经元。这些人造神经元就是神经网络最基础的「部件」。 

简而言之,每一个神经元接受两个或更多的输入,处理它们,然后输出一个结果。一些神经元从额外的传感器接收输入,然后其他神经元被其他已激活的神经元激活。神经元可能激活其它的神经元,或者通过触发的行动影响外部环境。所有的行为都是在「自动生成」的隐藏层中发生的,每个连续的图层都会输入前一层的输出。 

在实际项目中,神经网络大量摄取非结构化数据——声音、文字、影像和图片。神经网络将数据分离为数据块,然后将它发送到独立的神经元和网络层中去处理。一旦这些离散的处理都完成了,神经网络就产生最后的输出,我们就大功告成了! 

人工神经网络,或者说深度学习有什么优点?它的一大优点在于「可扩展性」。神经网络的性能取决于它可以吸收、训练和处理多少数据。所以,更多的数据意味着更好的结果——这是和「其它机器学习算法」的另一个区别,其它机器学习算法的效果通常稳定在一个明确的水平。深度学习仅通过资源衡量它的性能,层数更深,则输出更为广泛,性能也更为强劲。 

所以,尽管深度学习不快也不容易,但是通过更低的价格能得到更好的计算能力这一点,还是让各大公司「买买买」。


机器学习和深度学习的流行应用场景


机器学习已经在市场上「无孔不入」了,而深度学习还处于「初级阶段」,商业化程度有限。

在某些应用案例中,二者可以说十分相似,区别在于神经网络可以增长到接近无限的学习和输出规模;机器学习更受约束,适合具体的实际计算任务。 

注意啦,「机器学习」和「深度学习」并非相斥而是互补的关系。


机器学习和深度学习的未来


你不会走在大街上就碰见「深度学习」,它们需要大量的标记数据进行监督学习,或大量的非结构化数据进行无监督学习。因此,苦逼的技术人员需要花费大量的时间标记和向神经网络输入数据,或者需要输入数以百万计的非结构化对象来实现无监督学习。 

在现代这个IT社会,缺乏数据不再是问题——挑战是标记足够的数据,或者将足够的未标记数据导入神经网络。尽管处理能力不断增加,价格也有所下降,但密集计算仍然需要对系统和支持进行大量的投资。 

尽管如此,深度学习在许多不同的业务垂直领域都有很好的案例。像谷歌和Facebook这样的深度学习大佬正在使用深度学习开发炫酷的应用程序,而其他的开发者们则在「跟着大佬走」。

不管怎样,机器学习和深度学习是时代的大势所趋。就像整个世界因为互联网而变成了另一种样子,机器学习也会重塑这个世界。在这个过程中,越来越多的人会认识到机器学习的价值,机器学习也会变得越来越容易上手。说不定有一天,小学生也要开始学习机器学习了。


— 完 —


喜欢这篇文章?别忘了分享到朋友圈哦!

快点扫我~

长按上面二维码,关注优达学城(Udacity)订阅号,回复关键字【学习资料】,获取【大数据求职指南】、【机器学习求职指南】学习资料,让你不落人后!


忙着学习呢,没时间焦虑。点击 [阅读原文] ,2018年,给自己一个成为Google认证机器学习工程师的机会!


今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/MIW4RvdujE
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/9721
 
745 次点击