社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

PyTorch深度学习模型训练加速指南2021

机器学习算法与自然语言处理 • 4 年前 • 440 次点击  
公众号关注 “ML_NLP
设为 “星标”,重磅干货,第一时间送达!

作者:LORENZ KUHN

编译:ronghuaiyang

导读

简要介绍在PyTorch中加速深度学习模型训练的一些最小改动、影响最大的方法。我既喜欢效率又喜欢ML,所以我想我也可以把它写下来。

比如说,你正在PyTorch中训练一个深度学习模型。你能做些什么让你的训练更快结束?

在这篇文章中,我将概述一些在PyTorch中加速深度学习模型训练时改动最小,影响最大的方法。对于每种方法,我会简要总结其思想,并估算预期的加速度,并讨论一些限制。我将着重于传达最重要的部分,并为每个部分给出额外的一些资源。大多数情况下,我会专注于可以直接在PyTorch中进行的更改,而不需要引入额外的库,并且我将假设你正在使用GPU训练模型。

1. 考虑使用另外一种学习率策略

你选择的学习率对收敛速度以及模型的泛化性能有很大的影响。

循环学习率和1Cycle学习率策略都是Leslie N. Smith提出的方法,然后由fast.ai推广。本质上,1Cycle学习率策略看起来像这样:

Sylvain写道:

[1cycle由两个相同长度的步骤组成,一个是从较低的学习率到较高的学习率,另一个步骤是回到最低的学习速率。最大值应该是使用Learning Rate Finder选择的值,较低的值可以低十倍。然后,这个周期的长度应该略小于epochs的总数,并且,在训练的最后一部分,我们应该允许学习率减少超过最小值几个数量级。

在最好的情况下,与传统的学习率策略相比,这种策略可以实现巨大的加速 —— Smith称之为“超级收敛”。例如,使用1Cycle策略,在ImageNet上减少了ResNet-56训练迭代数的10倍,就可以匹配原始论文的性能。该策略似乎在通用架构和优化器之间运行得很好。

PyTorch实现了这两个方法,torch.optim.lr_scheduler.CyclicLRtorch.optim.lr_scheduler.OneCycleLR

这两个策略的一个缺点是它们引入了许多额外的超参数。为什么会这样呢?这似乎并不完全清楚,但一个可能的解释是,定期提高学习率有助于更快的穿越鞍点。

2. 在 DataLoader中使用多个workers和pinned memory

当使用torch.utils.data.DataLoader时,设置num_workers > 0,而不是等于0,设置pin_memory=True而不是默认值False。详细解释:https://pytorch.org/docs/stable/data.html。

Szymon Micacz通过使用4个workers和pinned memory,实现了单个训练epoch的2倍加速。

一个经验法则,选择workers的数量设置为可用GPU数量的4倍,更大或更小的workers数量会变慢。

注意,增加num_workers会增加CPU内存消耗。

3. 最大化batch size

这是一个颇有争议的观点。一般来说,然而,似乎使用GPU允许的最大的batch size可能会加速你的训练。注意,如果你修改了batch大小,你还必须调整其他超参数,例如学习率。这里的一个经验法则是,当你把batch数量翻倍时,学习率也要翻倍。

OpenAI有一篇很好的实证论文关于不同batch size需要的收敛步骤的数量。Daniel Huynh运行一些实验用不同batch大小(使用上面所讨论的1Cycle策略),从batch size 64到512他实现了4倍的加速。

然而,使用大batch的缺点之一是,它们可能会导致泛化能力比使用小batch的模型差。

4. 使用自动混合精度

PyTorch 1.6的发行版包含了对PyTorch进行自动混合精度训练的本地实现。这里的主要思想是,与在所有地方都使用单精度(FP32)相比,某些操作可以在半精度(FP16)下运行得更快,而且不会损失精度。然后,AMP自动决定应该以何种格式执行何种操作。这允许更快的训练和更小的内存占用。

AMP的使用看起来像这样:

import torch
# Creates once at the beginning of training
scaler = torch.cuda.amp.GradScaler()

for data, label in data_iter:
   optimizer.zero_grad()
   # Casts operations to mixed precision
   with torch.cuda.amp.autocast():
      loss = model(data)

   # Scales the loss, and calls backward()
   # to create scaled gradients
   scaler.scale(loss).backward()

   # Unscales gradients and calls
   # or skips optimizer.step()
   scaler.step(optimizer)

   # Updates the scale for next iteration
   scaler.update()

在NVIDIA V100 GPU上对多个NLP和CV的benchmark进行测试,Huang和他的同事们发现使用AMP在FP32训练收益率常规大约2x,但最高可达5.5x。

目前,只有CUDA ops可以通过这种方式自动转换。

5. 考虑使用另外的优化器

AdamW是由fast.ai推广的具有权重衰减(而不是L2正则化)的Adam。现在可以在PyTorch中直接使用,torch.optim.AdamW。无论在误差还是训练时间上,AdamW都比Adam表现更好。

Adam和AdamW都可以很好地使用上面描述的1Cycle策略。

还有一些自带优化器最近受到了很多关注,最著名的是LARS和LAMB

NVIDA的APEX实现了许多常见优化器的融合版本,如Adam。与Adam的PyTorch实现相比,这种实现避免了大量进出GPU内存的操作,从而使速度提高了5%。

6. 开启cudNN benchmarking

如果你的模型架构保持不变,你的输入大小保持不变,设置torch.backends.cudnn.benchmark = True可能是有益的。这使得cudNN能够测试许多不同的卷积计算方法,然后使用最快的方法。

对于加速的预期有一个粗略的参考,Szymon Migacz达到70%的forward的加速以及27%的forward和backward的加速。

这里需要注意的是,如果你像上面提到的那样将batch size最大化,那么这种自动调优可能会变得非常缓慢。

7. 注意CPU和GPU之间频繁的数据传输

小心使用tensor.cpu()tensor.cuda()频繁地将张量从GPU和CPU之间相互转换。对于.item().numpy()也是一样,用.detach()代替。

如果你正在创建一个新的张量,你也可以使用关键字参数device=torch.device('cuda:0')直接将它分配给你的GPU。

如果你确实需要传输数据,在传输后使用.to(non_blocking=True)可能会很有用,只要你没有任何同步点。

如果你真的需要,你可以试试Santosh Gupta的SpeedTorch,虽然不是很确定在什么情况下可以加速。

8. 使用gradient/activation检查点

直接引用文档中的话:

检查点的工作原理是用计算交换内存,并不是存储整个计算图的所有中间激活用于向后计算,检查点不保存中间的激活,而是在向后传递中重新计算它们。可以应用于模型的任何部分。

具体来说,在向前传递中,function会以torch.no_grad()的方式运行,也就是说,不存储中间激活。相反,正向传递保存输入和function的参数。在向后传递中,将检索保存的输入和function,并再次根据function计算向前传递,然后跟踪中间的激活,再使用这些激活值计算梯度。

因此,虽然这可能会略微增加给定batch大小的运行时间,但会显著减少内存占用。这反过来会允许你进一步增加你正在使用的batch大小,从而更好地利用GPU。

检查点的pytorch实现为torch.utils.checkpoint,需要想点办法才能实现的很好。

9. 使用梯度累加

增加batch大小的另一种方法是在调用optimizer.step()之前,在多个.backward()中累积梯度。

在Hugging Face的实现中,梯度累加可以实现如下:




    
model.zero_grad()                                   # Reset gradients tensors
for i, (inputs, labels) in enumerate(training_set):
    predictions = model(inputs)                     # Forward pass
    loss = loss_function(predictions, labels)       # Compute loss function
    loss = loss / accumulation_steps                # Normalize our loss (if averaged)
    loss.backward()                                 # Backward pass
    if (i+1) % accumulation_steps == 0:             # Wait for several backward steps
        optimizer.step()                            # Now we can do an optimizer step
        model.zero_grad()                           # Reset gradients tensors
        if (i+1) % evaluation_steps == 0:           # Evaluate the model when we...
            evaluate_model()                        # ...have no gradients accumulated

这个方法主要是为了避开GPU内存限制。fastai论坛上的这个讨论:https://forums.fast.ai/t/accumulating-gradients/33219/28似乎表明它实际上可以加速训练,所以可能值得一试。

10. 对于多个GPU使用分布式数据并行

对于分布式训练加速,一个简单的方法是使用torch.nn.DistributedDataParallel而不是torch.nn.DataParallel。通过这样做,每个GPU将由一个专用的CPU核心驱动,避免了DataParallel的GIL问题。

11. 将梯度设为None而不是0

使用.zero_grad(set_to_none=True)而不是.zero_grad()。这样做会让内存分配器去处理梯度,而不是主动将它们设置为0。正如在文档中所说的那样,这会导致产生一个适度的加速,所以不要期待任何奇迹。

注意,这样做并不是没有副作用的!关于这一点的详细信息请查看文档。

12. 使用.as_tensor() 而不是 .tensor()

torch.tensor() 会拷贝数据,如果你有一个numpy数组,你想转为tensor,使用 torch.as_tensor() 或是 torch.from_numpy() 来避免拷贝数据。

13. 需要的时候打开调试工具

Pytorch提供了大量的有用的调试工具,如autograd.profiler,autograd.grad_check和autograd.anomaly_detection。在需要的时候使用它们,在不需要它们的时候关闭它们,因为它们会减慢你的训练。

14. 使用梯度剪裁

最初是用于RNNs避免爆炸梯度,有一些经验证据和一些理论支持认为剪裁梯度(粗略地说:gradient = min(gradient, threshold))可以加速收敛。Hugging Face的Transformer实现是关于如何使用梯度剪裁以及其他的一些方法如AMP的一个非常干净的例子。

在PyTorch中,这可以通过使用torch.nn.utils.clip_grad_norm_实现。我并不完全清楚哪个模型从梯度裁剪中获益多少,但它似乎对RNN、基于Transformer和ResNets架构以及一系列不同的优化器都非常有用。

15. 在BatchNorm之前不使用bias

这是一个非常简单的方法:在BatchNormalization 层之前不使用bias。对于二维卷积层,可以将关键字bias设为False: torch.nn.Conv2d(..., bias=False, ...)

你会保存一些参数,然而,与这里提到的其他一些方法相比,我对这个方法的加速期望相对较小。

16. 在验证的时候关闭梯度计算

这个很直接:在验证的时候使用 torch.no_grad()

17. 对输入和batch使用归一化

你可能已经这么做了,但你可能想再检查一下:

  • 你的输入归一化了吗?
  • 你是否在使用batch-normalization

来自评论的额外的技巧:使用 JIT融合point-wise的操作

如果你有point-wise的操作,你可以使用PyTorch JIT将它们合并成一个FusionGroup,这样就可以在单个核上启动,而不是像默认情况下那样在多个核上启动。你还可以节省一些内存的读写。

Szymon Migacz展示了如何使用@torch.jit脚本装饰器来融合GELU中的操作,例如:

@torch.jit.script
def fused_gelu(x):
    return x * 0.5 * (1.0 + torch.erf(x / 1.41421))

在本例中,与未融合的版本相比,融合操作将导致 fused_gelu的执行速度提高5倍。

一些相关的资源

上面列出的许多技巧来自Szymon Migacz的谈话,并发表在:https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html。

PyTorch Lightning的William Falcon有两篇文章:

https://towardsdatascience.com/9-tips-for-training-lightning-fast-neural-networks-in-pytorch-8e63a502f565

https://towardsdatascience.com/7-tips-for-squeezing-maximum-performance-from-pytorch-ca4a40951259

其中有加速训练的技巧。PyTorch Lightning已经处理了上面默认的一些点。

Hugging Face的Thomas Wolf有很多关于加速深度学习的有趣文章,其中特别关注语言模型。

Sylvain Gugger和Jeremy Howard也有一些文章:

关于学习率策略的:https://sgugger.github.io/the-1cycle-policy.html,

关于找最佳学习率的:https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html

AdamW相关的:https://www.fast.ai/2018/07/02/adam-weight-decay/。



下载1:四件套

在机器学习算法与自然语言处理公众号后台回复“四件套”

即可获取学习TensorFlow,Pytorch,机器学习,深度学习四件套!


下载2:仓库地址共享

在机器学习算法与自然语言处理公众号后台回复“代码”

即可获取195篇NAACL+295篇ACL2019有代码开源的论文。开源地址如下:https://github.com/yizhen20133868/NLP-Conferences-Code


重磅! 机器学习算法与自然语言处理交流群已正式成立

群内有大量资源,欢迎大家进群学习!


额外赠送福利资源!深度学习与神经网络,pytorch官方中文教程,利用Python进行数据分析,机器学习学习笔记,pandas官方文档中文版,effective java(中文版)等20项福利资源

获取方式:进入群后点开群公告即可领取下载链接

注意:请大家添加时修改备注为 [学校/公司 + 姓名 + 方向]

例如 —— 哈工大+张三+对话系统。

号主,微商请自觉绕道。谢谢!


推荐阅读:

Tensorflow 的 NCE-Loss 的实现和 word2vec

多模态深度学习综述:网络结构设计和模态融合方法汇总

awesome-adversarial-machine-learning资源列表

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/106253
 
440 次点击