社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

英国科学家研发新型机器学习工具,能快速将2D材料图像转换为3D结构

DeepTech深科技 • 4 年前 • 648 次点击  



材料的性能和行为在很大程度上取决于其微观结构,而微观结构又受到制造条件的限制。而对这些关系的洞察方面,物理模拟发挥着重要作用,有助于为下一代材料的设计提供关键的信息支持。

尤其重要的是,许多材料在应力下的变形,或流体流经多孔介质时不能单独使用 2D 数据进行精确建模。因此,用于提取这些特性的模拟技术的保真度部分将取决于 3D 微观结构数据集的质量。

但很长一段时间以来,3D 复合材料的研究、设计和制造都是一大挑战。通常 2D 图像方法擅长甄别不同的材料,特点是成像高分辨率、视野宽,且成本低廉。对比之下,3D 成像技术不但价格昂贵,而且成像相对模糊,因此,其低分辨率的劣势大大限制了这种方式在复合材料识别方面的应用,例如,目前 3D 成像技术无法识别陶瓷材料、碳多聚粘合剂和液相孔等电池电极内的材料。

近日,伦敦帝国理工学院(Imperial College London)的研究人员开发出一种新型机器学习算法,能够将 2D 的复合材料图像转换为 3D 立体结构,从而帮助相关制造商和材料科学家进一步研究和改进 3D 电池电极和飞机部件等复合材料的设计与生产制造。

相关成果于 2021 年 4 月 5 日发表在《自然-机器智能》(Nature Machine Intelligence)杂志上,论文标题为《基于生成对抗网络的维度扩展将2D切片转化为3D结构》(Generating three-dimensional structures from a two-dimensional slice with generative adversarial network based dimension expansion)。

基于复合材料的 2D 横截面数据,该算法将不同材料组合起来,而这些材料的物理、化学性质不尽相同,然后扩展材料的横截面的尺寸,进而将其转换为3D计算机模型。这样一来,科学家就能够直观地对复合材料的不同组成部分或“phases”,以及它们如何组合起来进行仔细研究。

换句话说,该算法不仅能够帮助人们观察到复合材料的 2D 横截面的细节,还会将其放大,把“phases”放置到 3D 空间中研究。只有明确了解与掌握研究复合材料的分层结构,科学家及制造商才能在未来逐步优化这类材料的设计。

该研究团队指出,相比于利用物理 3D 对象创建 3D 计算机表示,他们的技术路线成本更低,效率也更高,并且,它还能够更清晰地识别出复合材料内部的不同的“phases”,而这正是该领域最大的技术难点之一,因此,该团队此次的研究成果超越了当前的大多数技术方法。

“将不同材料进行组合成复合材料,可以让我们充分利用每个组件的最佳性能,但由于材料的排列对性能有很大的影响,因此对其进行详细的研究一直以来都是一个挑战。通过我们的算法,研究人员将获取他们的 2D 图像数据,并生成所有特性保持一致的 3D 结构,这使他们能够进行更逼真的模拟。”论文的主要作者、帝国理工学院戴森设计工程学院(Imperial's Dyson School of Design Engineering)学习、设计和研究工具(TLDR)小组的博士生史蒂夫·肯奇(Steve Kench)表示。

图 | 生成性对抗网络在各种微结构上的应用(来源:Imperial College London)

在这项研究中,研究人员使用了新型机器学习技术“深度卷积生成性对抗网络”,英文为 Deep Convolutional Generative Adversarial Networks,简称 DC-GANs,该技术于 2014 年发明。生成性对抗网络是一种非常有前景的候选模型,也是将 2D 转换为 3D 的工具的核心。其由两个神经网络组成:一个生成器 G,用于合成假样本,另一个为鉴别器 D,用于从数据集中区分真假样本。在训练过程中,G 和 D 迭代更新,使生成器能够捕获真实数据集的特征。

具体来说,就是让两个神经网络彼此之间形成竞争,其中,一个神经网络显示 2D 图像,并进行快速学习识别,然后另一个神经网络则试图制作“假”的 3D 版本。如果第一个神经网络查看到“假”3D 版本中的所有 2D 切片,并把它们认定为“真的”,那么这些版本就可以用于模拟任何材质的属性。

该团队将这种技术应用到维度扩展的任务中,能够以更快的速度对不同的材料进行组合,以更快找到性能更优越的复合材料。

该研究的合著者之一、戴森设计工程学院 TLDR 小组负责人萨姆·库珀(Sam Cooper)博士表示,“电池等许多包含复合材料的设备的性能,与其内部组件在微观尺度上的 3D 排列密切相关。但是,对这些材料进行足够详细的 3D 成像的难度非常大。我们希望我们的新机器学习工具能够帮助材料设计界摆脱对昂贵的 3D 成像机的依赖。”

-End-


参考:
https://techxplore.com/news/2021-04-machine-tool-2d-material-images.html


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/111612
 
648 次点击