社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

Math4DS 直播 NO.43 | 芝加哥大学Willett教授 机器学习和逆成像问题

运筹OR帷幄 • 4 年前 • 532 次点击  
↑↑↑↑↑点击上方蓝色字关注我们!






『运筹OR帷幄』原创


作者:Elaine潋


SUMMER

编者按

SUMMER TIME

Online Seminar on Mathematical Foundations of Data Science (Math for DS) [1]是在线的、每周举办的系列研讨会。研讨会旨在讨论数据科学、机器学习、统计以及优化背后的数学原理,邀请了北美诸多知名学者进行主题演讲。『运筹OR帷幄』和『机器之心』作为合作媒体,将在B站发布往期的回放视频。本期,受邀嘉宾将为我们带来主题为“Machine Learning and Inverse Problems in Imaging”的演讲。


Online Seminar on  Mathematical Foundations of Data Science(Math4DS)是在线的、每周举办的系列研讨会,其内容涵盖数据科学、机器学习、统计以及优化背后的数学基础。


有关研讨会的公告可通过点击阅读原文,链接到国内镜像网址获得。


此外,『运筹OR帷幄』公众号平台会及时预告研讨会的最新消息,敬请关注!


Math for DS 第四十三期线上直播预告

主题:Machine Learning and Inverse Problems in Imaging

嘉宾:Rebecca Willett

时间:北京时间5月14日23:00

地点:Zoom,公众号后台回复 Math4DS


主题介绍

Many challenging image processing tasks can be described by an ill-posed linear inverse problem: deblurring, deconvolution, inpainting, compressed sensing, and superresolution all lie in this framework. Recent advances in machine learning and image processing have illustrated that it is often possible to learn inverse problem solvers from training data that can outperform more traditional approaches by large margins. These promising initial results lead to a myriad of mathematical and computational challenges and opportunities at the intersection of optimization theory, signal processing, and inverse problem theory.


In this talk, we will explore several of these challenges and the foundational tradeoffs that underlie them. First, we will examine how knowledge of the forward model can be incorporated into learned solvers and its impact on the amount of training data necessary for accurate solutions. Second, we will see how the convergence properties of many common approaches can be improved, leading to substantial empirical improvements in reconstruction accuracy. Finally, we will consider mechanisms that leverage learned solvers for one inverse problem to develop improved solvers for related inverse problems.


This is joint work with Davis Gilton and Greg Ongie.


嘉宾介绍

Rebecca Willett is a Professor of Statistics and Computer Science at the University of Chicago. Her research is focused on machine learning, signal processing, and large-scale data science. Willett received the National Science Foundation CAREER Award in 2007, was a member of the DARPA Computer Science Study Group, received an Air Force Office of Scientific Research Young Investigator Program award in 2010, and was named a Fellow of the Society of Industrial and Applied Mathematics in 2021. She is a co-principal investigator and member of the Executive Committee for the Institute for the Foundations of Data Science, helps direct the Air Force Research Lab University Center of Excellence on Machine Learning, and currently leads the University of Chicago’s AI+Science Initiative. She serves on advisory committees for the National Science Foundation’s Institute for Mathematical and Statistical Innovation, the AI for Science Committee for the US Department of Energy’s Advanced Scientific Computing Research program, the Sandia National Laboratories Computing and Information Sciences Program, and the University of Tokyo Institute for AI and Beyond. She completed her PhD in Electrical and Computer Engineering at Rice University in 2005 and was an Assistant then tenured Associate Professor of Electrical and Computer Engineering at Duke University from 2005 to 2013. She was an Associate Professor of Electrical and Computer Engineering, Harvey D. Spangler Faculty Scholar, and Fellow of the Wisconsin Institutes for Discovery at the University of Wisconsin-Madison from 2013 to 2018.


嘉宾Google Scholar页面:


直播地址

关注下方公众号,后台回复 Math4DS,获取直播链接





如何观看B站录播?


受北美教授的时间限制,Math4DS每期研讨会时间大多设置在美东时间周二的下午三点,即北京时间周三的凌晨三点。这对于国内的观众非常不友好,但是『运筹OR帷幄』也在B站提供了每期的录播,错过直播的小伙伴和想要回顾的小伙伴可以在前往B站观看,小编也会在第一时间上传最新的研讨会视频。


B站官方号:运筹OR帷幄

https://space.bilibili.com/403058474


研讨会主办方简介

组织者:

Ethan X. Fang, Niao He, Junwei Lu, Zhaoran Wang,  Zhuoran Yang, Tuo Zhao


赞助方:


参考文献

[1]https://sites.google.com/view/seminarmathdatascience/home


本文责编


相关文章推荐

北美Math4DS第二十九期线上直播由Math4DS 直播 NO.29 | 加州大学伯克利分校电子工程与计算机科学、统计系教授Peter Bartlett进行主题演讲,『运筹OR帷幄』和『机器之心』作为官方合作媒体,在前者B站为大家带来回放。了解『运筹OR帷幄』更多直播信息,欢迎关注我们的官方知乎和B站机构号:运筹OR帷幄。


点击蓝字标题,即可阅读 Math4DS第二十九期直播报告:《 加州大学伯克利分校电子工程与计算机科学、统计系教授Peter Bartlett》



—— 完 ——





文章须知

文章作者:运筹OR帷幄整理

责任编辑:Elaine潋  留德华叫兽

审核编辑:阿春

微信编辑:玖蓁

本文由『运筹OR帷幄』原创发布

如需转载请在公众号后台获取转载须知





Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/114368
 
532 次点击