社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  DATABASE

MySQL数据库时间类型datetime、bigint、timestamp的查询效率比较

码小辫 • 4 年前 • 494 次点击  

码小辫
专注更多编程视频和电子书
天天在用钱

来源:https://juejin.im/post/6844903701094596615

作者: 何甜甜在吗


数据库中可以用datetime、bigint、timestamp来表示时间,那么选择什么类型来存储时间比较合适呢?

前期数据准备

通过程序往数据库插入50w数据

  • 数据表:
CREATE TABLE `users` (
  `id` int(11NOT NULL AUTO_INCREMENT,
  `time_date` datetime NOT NULL,
  `time_timestamp` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `time_long` bigint(20NOT NULL,
  PRIMARY KEY (`id`),
  KEY `time_long` (`time_long`),
  KEY `time_timestamp` (`time_timestamp`),
  KEY `time_date` (`time_date`)
ENGINE=InnoDB AUTO_INCREMENT=500003 DEFAULT CHARSET=latin1

其中time_long、time_timestamp、time_date为同一时间的不同存储格式

  • 实体类users
/**
 * @author hetiantian 
 * @date 2018/10/21
 * */

@Builder
@Data
public class Users {
    /**
     * 自增唯一id
     * */

    private Long id;

    /**
     * date类型的时间
     * */

    private Date timeDate;

    /**
     * timestamp类型的时间
     * */

    private Timestamp timeTimestamp;

    /**
     * long类型的时间
     * */

    private long timeLong;
}
  • dao层接口
/**
 * @author hetiantian
 * @date 2018/10/21
 * */

@Mapper
public interface UsersMapper {
    @Insert("insert into users(time_date, time_timestamp, time_long) value(#{timeDate}, #{timeTimestamp}, #{timeLong})")
    @Options(useGeneratedKeys = true,keyProperty = "id",keyColumn = "id")
    int saveUsers(Users users);
}
  • 测试类往数据库插入数据
public class UsersMapperTest extends BaseTest {
    @Resource
    private UsersMapper usersMapper;

    @Test
    public void test() {
        for (int i = 0; i 500000; i++) {
            long time = System.currentTimeMillis();
            usersMapper.saveUsers(Users.builder().timeDate(new Date(time)).timeLong(time).timeTimestamp(new Timestamp(time)).build());
        }
    }
}

sql查询速率测试

  • 通过datetime类型查询:
select count(*) from users where time_date >="2018-10-21 23:32:44" and time_date <="2018-10-21 23:41:22"

耗时:0.171

  • 通过timestamp类型查询
select count(*) from users where time_timestamp >= "2018-10-21 23:32:44" and time_timestamp <="2018-10-21 23:41:22"

耗时:0.351

  • 通过bigint类型查询
select count(*) from users where time_long >=1540135964091 and time_long <=1540136482372  

耗时:0.130s

  • 结论 在InnoDB存储引擎下,通过时间范围查找,性能bigint  > datetime > timestamp

sql分组速率测试

使用bigint 进行分组会每条数据进行一个分组,如果将bigint做一个转化在去分组就没有比较的意义了,转化也是需要时间的

  • 通过datetime类型分组:
select time_date, count(*) from users group by time_date

耗时:0.176s

  • 通过timestamp类型分组:



    
select time_timestamp, count(*) from users group by time_timestamp

耗时:0.173s

  • 结论 在InnoDB存储引擎下,通过时间分组,性能timestamp > datetime,但是相差不大

sql排序速率测试

  • 通过datetime类型排序:
select * from users order by time_date

耗时:1.038s

  • 通过timestamp类型排序
select * from users order by time_timestamp

耗时:0.933s

  • 通过bigint类型排序
select * from users order by time_long

耗时:0.775s

  • 结论 在InnoDB存储引擎下,通过时间排序,性能bigint > timestamp > datetime

小结

如果需要对时间字段进行操作(如通过时间范围查找或者排序等),推荐使用bigint,如果时间字段不需要进行任何操作,推荐使用timestamp,使用4个字节保存比较节省空间,但是只能记录到2038年记录的时间有限

-END-

关注视频号,参与留言送书活动

↓↓↓↓

一个认真分享的小编

前沿技术 /名企内推 /干货分享

商务合作:dot3721
长按左侧二维码添加

点分享

点点赞

点在看

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/117216
 
494 次点击