社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Git

火爆 GitHub!这个图像分割神器究竟有什么魅力?

夕小瑶的卖萌屋 • 3 年前 • 337 次点击  


基于人工智能和深度学习方法的现代计算机视觉技术在过去10年里取得了显著进展。如今,它被用于图像分类、人脸识别、图像中物体的识别、视频分析和分类以及机器人和自动驾驶车辆的图像处理等应用上。

图像分割有助于确定目标之间的关系,以及目标在图像中的上下文。应用包括人脸识别、车牌识别和卫星图像分析。例如,零售和时尚等行业在基于图像的搜索中使用了图像分割。自动驾驶汽车用它来了解周围的环境。

而深度学习可以学习视觉输入的模式,以预测组成图像的对象类。用于图像处理的主要深度学习架构是卷积神经网络(CNN),或者是特定的CNN框架,如AlexNet、VGG、Inception和ResNet。计算机视觉的深度学习模型通常在专门的图形处理单元(GPU)上训练和执行,以减少计算时间。

随着技术的普及,各家企业的框架逐渐成熟化,图像分割技术的门槛会越来越低。但是由于实际业务的不断丰富和深入,开源框架和工具也已经无法直接满足实际生产和业务需求。

那么为了让大家更好地掌握 图像分类和分割 ,邀请人工智能实战专家唐宇迪博士。专为深度学习的同学开设了『图像分类与分割』特训营帮助学习背后根本原理和调试代码程序的方式与思路,提升解决实际问题的能力。

 

课程大纲

上课时间:7月20日-22日,每晚20:00-22:30

课程服务:录播+直播授课+讲师答疑+课堂笔记+作业布置

Day1深度学习必备核心算法通俗解读
  1. 神经网络模型细节知识点分析.

  2. 神经网络模型整体架构解读.

  3. 计算机视觉核心模型-卷积神经网络.

  4. 卷积神经网络整体架构及其参数设计.


Day2深度学习必备框架PyTorch实战
  1. PyTorch框架整体功能解读.

  2. 图像预处理与图像增强实例.

  3. 图像分类项目流程分析.

  4. 预训练模型的作用与效果.


Day3图像分割与目标检测实战
  1. 图像分割算法解读.

  2. Unet算法实例应用.

  3. 物体检测算法解读.

  4. YOLOV5实例应用.

注:本次训练营会PPT课件、课堂笔记。
PPT课件、课堂笔记会在7月22日统一发给完成全部作业且3天都到课的同学。

原价199

扫描下方二维码

0.02元报名

福利较大,限前200名

课程服务

1. 师资助力

讲师&助教及时答疑解惑,班主任全程带班督学,帮你克服拖延,不断进步。

2. 定期班会

讲师1v1批改作业,并在班会中进行讲评和指导;在班会中,学习更多技巧;在交流中收获更多思路。

专属福利

扫码参与必得内部福利:技术资料+面试题库





注意:为了保障学员可以获得老师的答疑服务,本次课程名额有限!

原价199

扫描下方二维码

0.02元报名

福利较大,限前200名
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/117309
 
337 次点击