社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

机器学习专业要不要读博?

小白学视觉 • 4 年前 • 288 次点击  

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自|机器学习算法那些事
要不要读博?读博值不值得?如何才能顺利完成博士生涯,并为职业发展打好基础?最近,社交网络上就此展开了一场争论。

读博还是不读博,这是个问题。

是否读博、读博有多难是个经久不衰的话题。最近,一个 reddit 热帖再次点燃了大家的讨(tu)论(cao)热情。

一位机器学习方向博五学生谈论了他的读博经历,而主旨竟然是「为什么你不应该读博?」。


为什么不应该读博?

这位博士生分享了他在「博士之旅」中的一些观察,并表示自己的读博经历和体验并非个例。

以下是他的观察结果:

首先,读博耗时长,机会成本高,而最终的回馈却并不丰厚。这有点像是一个骗局。一些朋友还分享过教授不让学生毕业的「恐怖故事」……

但这只是发帖人认为不应读博的表层理由。

主要原因是读博伤害创造力和创新性。博士项目吸纳了很多视野广阔、有创造力和创新性、有抱负、积极进取的学生,略微天真但有梦想。这些学生在开始读博时拥有独特的想法和视角,以及解决问题空间的新方法,并且期待自己能产生影响力。

然而博士项目把这些都毁掉了。在博士项目结束时,学生被变成了机器,用和他人同样的方式来解决问题。他们被这样教导:这是 SOTA 方法,你只要对这些算法做出哪怕微小的改进就已经很幸运了

问题在于 SOTA 可能只是局部最优解呢。也就是说,这些学生被灌输的想法是用次优方法解决问题空间。这就难怪他们无法做出有影响力的东西呢,方法本身就处于平台期了。

那么如何使机器学习模型跳出局部最优解呢?对探索 / 随机化给予奖励。

发帖人认为我们需要反省教学方式。显然,为了高效,博士生需要具备一定程度的特定领域专业知识,但这不能以想象力作为代价,更不能是寻求新方法的勇气。99% 的新方法可能结果不如 SOTA 方法,但也许正是一个独特的、疯狂的 idea 会使领域变得更加开阔。

当你成为「专家」的时候,你获得了很多,同时也失去了很多。发帖人表示:「在开始读博前,我能够很兴奋地发动自己的想象力,思考一些天马行空的方法来解决问题。其中大部分想法存在致命缺陷,但我对此并不设限。」

科研应当是一场富有创造性的疯狂冒险。而博士项目吸引了有潜力带来巨大影响力的学生,然后又浇灭了他们的激情和创造性。这就像明星大学生运动员进入了一个执教糟糕的队伍,最后变得越来越差。

这篇帖子发出后,引发了大家对「创造性」、「一味追求 SOTA」等的激烈讨论。今天,reddit 上出现了一个回应帖,其标题是「为什么应该读博」。

为什么应该读博?

这位发帖人是一位强化学习方向的博士,ta 表示很享受自己的博士生涯,并阐述了从读博经历中学到的东西,给出了关于读博的一些建议。

ta 认为以下这些事情使得读博经历令人满意:

  1. 与导师建立富有成效的关系。如果你足够幸运,你的导师可能是世界级专家,还能即时回应你的问题,对你的 idea 感兴趣并提出有益的改进建议。

  2. 在不要求具体产出的前提下,了解自己感兴趣的主题。

  3.  日常工作能够匹配你想要建立的技能组合。

  4.  基于自己的 idea 自主创建项目。

  5.  拥有实验室专家资源,并锻炼与其合作、社交、接受反馈的能力。

  6.  获得去工业界实习的机会。

  7. 在顶级会议和期刊上发表工作。


如果你能从读博生涯中获得这些,那这次经历一定是有趣且值得的。如果你足够幸运,这还将为你之后的职业生涯奠定基础。

那么如何评估以上 7 点呢?发帖人提供了一些建议:

  1. 仔细阅读潜在导师的最佳出版物和近期有影响力的工作,确认其此前是否指导过优秀的学生。与潜在导师现在或之前的学生联系,询问他们与导师合作时的工作状态。如果可以的话,你还可以参与实验室轮转项目。

  2. 了解实验室同事是否有很大的论文发表压力。如果是,那么你可能很难了解其他领域。你所在的实验室 / 大学是否欢迎来自不同角度的创造性想法,是否有参加有趣讲座、和有才能的人进行交流互动的机会?

  3. 你将成为 PhD 所学方向的领域专家。思考这会带给你什么技能组合,读博结束后你又能凭借它们获得什么。同样地,你还需要思考获取这些技能的过程,以及你是否享受这一过程。

  4. 导师给你的是涉及狭窄主题的项目还是一幅更广阔的图景?(推荐后者,尽管风险性更大。)导师的发表文章主题局限于狭窄的主题还是多个相关领域?导师的工作是否具备较高质量?

  5. 与现在实验室的成员见面,尝试了解他们的兴趣、专业方向和合作意愿。如果他们近期发表过文章,阅读并与他们进行讨论。

  6.  博士期间的实习对学习和未来职业生涯很有帮助。机器学习领域能够提供很好的机会,请尽量利用好这些机会。

  7. 实验室同事是否经常在顶级会议和期刊上发表文章?他们的工作是否被广泛引用,或者更具体地,是否对领域研究产生直接影响?


最后,请记住一点,在现实中,你不太可能有机会满足所有这些标准,所以你的期望要合理,将读博可能获得的机会与非博士的机会进行仔细权衡,认真评估所有证据,然后跟着自己的直觉做出是否读博的选择。

此外,这位发帖人还强调:

沉没成本谬误是真实的。在考虑现有项目和未来项目时,如果你在一个想法上下了很大功夫却没有成功,不要害怕改变方向。同样地,如果你尽力了,但事情并没有解决,也不要怯于更换导师或合作伙伴。在止步不前时要及时发现这一点,并尽己所能(当然是在合理的范围内)摆脱它。如果事情变得很糟糕,不要害怕辍学。读博生涯应该充满兴奋和机会,而不是对失败的恐惧。


没有人能随随便便读完博士。去年,Nature 进行的博士生调查揭示了博士学位攻读中那些艰难的真相:科研压力、与导师的交流问题、就业压力等等。然而,依然有很多令人艳羡的「别人的博士生涯」。

当我们羡慕「别人的博士生涯」时,真正羡慕的是什么?当我们面临读博挫折时,是否要撑下去,能否撑下去?

以及最根本的,读博还是不读博?这个问题,你怎么答?

下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲 即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/117699
 
288 次点击