社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

可解释机器学习进展,附74页ppt与视频

机器学习算法与自然语言处理 • 4 年前 • 451 次点击  
公众号关注 “ML_NLP
设为 “星标”,重磅干货,第一时间送达!


随着机器学习黑盒越来越多地部署在医疗保健和刑事司法等领域,人们越来越重视构建工具和技术,以事后方式解释这些黑盒。这些解释正被领域专家用来诊断系统性错误和黑盒的潜在偏见。然而,最近的研究揭示了流行的事后解释技术的弱点。在本教程中,我将简要概述事后解释方法,特别强调特征归因方法,如LIME和SHAP。然后,我将讨论最近的研究,这些研究表明,这些方法是脆弱的,不稳定的,并容易受到各种对抗性攻击。最后,我将提出两种解决方案,以解决这些方法的一些漏洞: (I) 一个基于对抗性训练的通用框架,旨在使事后解释更稳定,更鲁棒,以应对底层数据的变化,(ii) 贝叶斯框架,捕获与事后解释相关的不确定性,从而允许我们生成满足用户指定的置信水平的可靠解释。总的来说,本教程将提供可解释机器学习这一新兴领域的最新技术的概述。


https://www.chilconference.org/tutorial_T04.html



推荐阅读:
H.T. Kung 关于研究的有用建议
什么是Transformer位置编码?
17篇注意力机制PyTorch实现,包含MLP、Re-Parameter系列热门论文


点击下方卡片,关注公众号“机器学习算法与自然语言处理”,获取更多信息:
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/119569
 
451 次点击