CaGCN[9]是第一个对图神经网络中的置信度进行校正的方法,其设计考虑到了图数据结构中独特的拓扑结构信息,并详细分析了在对图神经网络中的置信度进行校正时考虑拓扑信息的必要性。具体来说,考虑两个节点a, b,其中 a 节点处于高同配性的区域,即 a 节点与其邻居节点的特征和标签均相近,而 b 节点处于高异配性的区域。根据第2节提到的图神经网络的置信度校正性差的结论,我们可以假设节点a和b的置信度均没有被很好的校正,此外,为了便于分析,我们额外假设两节点的逻辑向量 相近。根据之前的研究结论,具有代表性的图神经网络模型如GCN、GAT等在高同配性的数据集中表现更好,因此我们可以认为节点 a 应该具有更高的置信度,而相应地,节点b的置信度应该比较低。然而,在不考虑到网络的拓扑结构的情况下,由于两节点的逻辑向量 相近(如前面所述,一般是校正函数的输入),因此只能对 a 和 b 进行相同方向的校正,而无法同时使 a 的置信度变高并使 b 的置信度变低。所以,理论上讲,CV 和 NLP 中提出的置信度校正方法事实上并不适用于图数据结构。
[1] Guo C, Pleiss G, Sun Y, et al. On calibration of modern neural networks[C]//International Conference on Machine Learning. PMLR, 2017: 1321-1330.
[2] Mukhoti J, Kulharia V, Sanyal A, et al. Calibrating deep neural networks using focal loss[J]. arXiv preprint arXiv:2002.09437, 2020.
[3] Bai Y, Mei S, Wang H, et al. Don't Just Blame Over-parametrization for Over-confidence: Theoretical Analysis of Calibration in Binary Classification[J]. arXiv preprint arXiv:2102.07856, 2021.
[4] Gal Y, Ghahramani Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning[C]//international conference on machine learning. PMLR, 2016: 1050-1059.
[5] Thulasidasan S, Chennupati G, Bilmes J, et al. Improved calibration and predictive uncertainty for deep neural networks[J]. arXiv preprint arXiv:1905.11001, 2019.
[6] Zadrozny, Bianca and Elkan, Charles. Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In ICML, pp. 609–616, 2001.
[7] Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. An empirical distribution function for sampling with incomplete information. The Annals of Mathematical Statistics, pp. 641–647, 1955.
[8] Zhang J, Kailkhura B, Han T Y J. Mix-n-match: Ensemble and compositional methods for uncertainty calibration in deep learning[C]//International Conference on Machine Learning. PMLR, 2020: 11117-11128.
[9] Wang X, Liu H, Shi C, et al. Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration[J]. Advances in Neural Information Processing Systems, 2021, 34.