[1] Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. (2020). Physically interpretable neural networks for the geosciences: Applications to Earth system variability. Journal of Advances in Modeling Earth Systems, 12, e2019MS002002.
DOI: 10.1029/2019MS002002
[2] Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., & Klambauer, G. (2019). NeuralHydrology – Interpreting LSTMs in hydrology. In Explainable AI: Interpreting, explaining and visualizing deep learning (pp. 347–362). Springer International Publishing.
DOI: 10.1007/978-3-030-28954-6_19
[3] Berghuijs, W. R., Woods, R. A., Hutton, C. J., and Sivapalan, M. (2016), Dominant flood generating mechanisms across the United States, Geophysical Research Letter, 43, 4382– 4390,
DOI:10.1002/2016GL068070