. . . File "c:userslenovoanaconda3envsmitoenvlibsite-packagesjupyter_corepaths.py", line 387, in win32_restrict_file_to_user import win32api ImportError: DLL load failed while importing win32api: The specified module could not be found.
# MITO CODE START (DO NOT EDIT) from mitosheet import * # Import necessary functions from Mito register_analysis('UUID-7bf77d26-84f4-48ed-b389-3f7a3b729753') # Let Mito know which analysis is being run
# Imported edxCourses.csv import pandas as pd edxCourses_csv = pd.read_csv('edxCourses.csv') # Added column H to edxCourses_csv edxCourses_csv.insert(7, 'H', 0) # Renamed H to newCol in edxCourses_csv edxCourses_csv.rename(columns={"H": "newCol"}, inplace=True) # Set newCol in edxCourses_csv to =coursePrice + courseEnrollments edxCourses_csv['newCol'] = edxCourses_csv['coursePrice'] + edxCourses_csv['courseEnrollments'] # Deleted column newCol from edxCourses_csv edxCourses_csv.drop('newCol', axis=1, inplace=True) # MITO CODE END (DO NOT EDIT)
# MITO CODE START (DO NOT EDIT) from mitosheet import * # Import necessary functions from Mito register_analysis('UUID-a35246c0-e0dc-436b-8667-076d4f08e0c1') # Let Mito know which analysis is being run # Imported edxCourses.csv import pandas as pd edxCourses_csv = pd.read_csv('edxCourses.csv') # Pivoted edxCourses_csv into df2 pivot_table = edxCourses_csv.pivot_table( index=['courseOrganization'], values=['coursePrice'], aggfunc={'coursePrice': 'mean'} ) # Reset the column name and the indexes df2 = pivot_table.rename_axis(None, axis=1).reset_index() # MITO CODE END (DO NOT EDIT)
# MITO CODE START (DO NOT EDIT) from mitosheet import * # Import necessary functions from Mito register_analysis('UUID-cc414267-d9aa-4017-8890-ee3b7461c15b') # Let Mito know which analysis is being run # Imported edxCourses.csv import pandas as pd edxCourses_csv = pd.read_csv('edxCourses.csv') # Changed coursePrice from int64 to float edxCourses_csv['coursePrice'] = edxCourses_csv['coursePrice'].astype('float') # Sorted coursePrice in edxCourses_csv in descending order edxCourses_csv = edxCourses_csv.sort_values(by='coursePrice', ascending=False, na_position='first') edxCourses_csv = edxCourses_csv.reset_index(drop=True) # Filtered coursePrice in edxCourses_csv edxCourses_csv = edxCourses_csv[edxCourses_csv['coursePrice'] >= 500] edxCourses_csv = edxCourses_csv.reset_index(drop=True) # MITO CODE END (DO NOT EDIT)