import matplotlib.pyplot as plt from kneed import KneeLocator from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.preprocessing import StandardScaler
# A list holds the SSE values for each k sse = [] for k in range(1, 11): kmeans = KMeans(n_clusters=k, **kmeans_kwargs) kmeans.fit(scaled_features) sse.append(kmeans.inertia_)
# A list holds the silhouette coefficients for each k silhouette_coefficients = []
# Notice you start at 2 clusters for silhouette coefficient for k in range(2, 11): kmeans = KMeans(n_clusters=k, **kmeans_kwargs) kmeans.fit(scaled_features) score = silhouette_score(scaled_features, kmeans.labels_) silhouette_coefficients.append(score)