我对学习数学有先入为主的抵触情绪,归因于对学习成绩的不满。老生也有可能学习新的技巧。
我发现ML概念很容易理解,课程设计的方式(视频,支持笔记,练习,测试等)支持成人教育实践。我有信心进行有关机器学习的概念性讨论,制定分析结果,数据类型和来源的重要性,验证,培训和测试。
然而,我真正学到的是,没有类似AI这样的东西......这都是聪明的数学,但也有很多原因,例如基于各种数学假设以及个人感知的偏见,机器学习算法可能是有误的。了解基本的风险因素使我能够提出正确的问题。
人力资源专业人士和数据科学家,彼此需要利用数字化成果,才能取得成功。对我来说,显而易见的是,据数据科学家的技能特征,不适合提出正确的人力资源类型问题。
以上内容由AI翻译,仅供参考