Py学习  »  机器学习算法

讲座推荐 | 哈佛大学经济系梅丽莎·戴尔:大规模管理经济数据的深度学习方法

PoIiticaI理论志 • 3 年前 • 413 次点击  


【量化历史网上讲座系列】(Quantitative History Webinar Series)由香港大学陈志武教授和马驰骋博士联合发起并举办,旨在介绍前沿量化历史研究成果、促进同仁交流,推广量化方法在历史研究中的应用。本系列讲座由国际量化历史学会、香港大学经济管理学院和亚洲环球研究所全力支持和承办。


第60场讲座信息



Deep Learning Methods to Curate Economic Data at Scale


主讲人: Melissa Dell, Andrew E. Furer Professor of Economics, Harvard University


时间: 2022年06月16日 09:00 - 10:30 (北京时间,星期四)


讲座语言:英文

 

注册链接及二维码:

https://hku.zoom.us/webinar/register/3316550089626/WN_CVsmsaTER4WTneB8bgcYpg


讲座介绍



Vast amounts of data are trapped in non-computable formats, such as document image scans and text. Deep learning has the potential to greatly expand the questions that economists can study by providing rigorous methods for converting non-computable information into structured, computable data. Combined with advances in GPU compute and inexpensive cloud compute, this makes it feasible to process data on a massive scale.


In this Quantitative History Webinar, Melissa Dell of Harvard University will provide an overview of her recent work to develop deep learning methods and tools for creating computable social science data, with an aim of making structured digital data more representative of documentary history. This work emphasizes lower resource contexts - for which there are few incentives for commercial technology – and encompasses novel approaches and tools for document layout analysis, OCR, and NLP pipelines.

本文转载自“量化历史研究”公众号


“在看”给我一朵小黄花

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/135819
 
413 次点击