社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

实操教程 | 深度学习pytorch训练代码模板(个人习惯)

机器学习算法与自然语言处理 • 3 年前 • 214 次点击  

MLNLP社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。
社区的愿景是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。

转载自 | 极市平台

作者 | wfnian

来源 | https://zhuanlan.zhihu.com/p/396666255

目录如下:

  1. 导入包以及设置随机种子
  2. 以类的方式定义超参数
  3. 定义自己的模型
  4. 定义早停类(此步骤可以省略)
  5. 定义自己的数据集Dataset,DataLoader
  6. 实例化模型,设置loss,优化器等
  7. 开始训练以及调整lr
  8. 绘图
  9. 预测

1

『导入包以及设置随机种子』

import numpy as np
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

import random
seed = 42
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)


2

『以类的方式定义超参数』

class


    
 argparse():
pass

args = argparse()
args.epochs, args.learning_rate, args.patience = [30, 0.001, 4]
args.hidden_size, args.input_size= [40, 30]
args.device, = [torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),]


3

『定义自己的模型』

class Your_model(nn.Module):
def __init__(self):
super(Your_model, self).__init__()
pass

def forward(self,x):
pass
return x


4

『定义早停类』

class EarlyStopping():
def __init__(self,patience=7,verbose=False,delta=0):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self,val_loss,model,path):
print("val_loss={}".format(val_loss))
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss,model,path)
elif score < self.best_score+self.delta:
self.counter+=1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter>=self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss,model,path)
self.counter = 0
def save_checkpoint(self,val_loss,model,path):
if self.verbose:
print(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), path+'/'+'model_checkpoint.pth')
self.val_loss_min = val_loss


5

『定义自己的数据集Dataset,DataLoader』




    
class Dataset_name(Dataset):
def __init__(self, flag='train'):
assert flag in ['train', 'test', 'valid']
self.flag = flag
self.__load_data__()

def __getitem__(self, index):
pass
def __len__(self):
pass

def __load_data__(self, csv_paths: list):
pass
print(
"train_X.shape:{}\ntrain_Y.shape:{}\nvalid_X.shape:{}\nvalid_Y.shape:{}\n"
.format(self.train_X.shape, self.train_Y.shape, self.valid_X.shape, self.valid_Y.shape))

train_dataset = Dataset_name(flag='train')
train_dataloader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
valid_dataset = Dataset_name(flag='valid')
valid_dataloader = DataLoader(dataset=valid_dataset, batch_size=64, shuffle=True)


6

『实例化模型,设置loss,优化器等』

model = Your_model().to(args.device)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(Your_model.parameters(),lr=args.learning_rate)

train_loss = []
valid_loss = []
train_epochs_loss = []
valid_epochs_loss = []

early_stopping = EarlyStopping(patience=args.patience,verbose=True)


7

『开始训练以及调整lr』

for epoch in range(args.epochs):
Your_model.train()
train_epoch_loss = []
for idx,(data_x,data_y) in enumerate(train_dataloader,0):
data_x = data_x.to(torch.float32).to(args.device)
data_y = data_y.to(torch.float32).to(args.device)
outputs = Your_model(data_x)
optimizer.zero_grad()
loss = criterion(data_y,outputs)
loss.backward()
optimizer.step()
train_epoch_loss.append(loss.item())
train_loss.append(loss.item())
if idx%(len(train_dataloader)//2)==0:
print("epoch={}/{},{}/{}of train, loss={}".format(
epoch, args.epochs, idx, len(train_dataloader),loss.item()))
train_epochs_loss.append(np.average(train_epoch_loss))

#=====================valid============================
Your_model.eval()
valid_epoch_loss = []
for idx,(data_x,data_y) in enumerate(valid_dataloader,0):
data_x = data_x.to(torch.float32).to(args.device)
data_y = data_y.to(torch.float32).to(args.device)
outputs = Your_model(data_x)
loss = criterion(outputs,data_y)
valid_epoch_loss.append(loss.item())
valid_loss.append(loss.item())
valid_epochs_loss.append(np.average(valid_epoch_loss))
#==================early stopping======================
early_stopping(valid_epochs_loss[-1],model=Your_model,path=r'c:\\your_model_to_save')
if early_stopping.early_stop:
print("Early stopping")
break
#====================adjust lr========================
lr_adjust = {
2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6,
10: 5e-7, 15: 1e-7, 20: 5e-8
}
if epoch in lr_adjust.keys():
lr = lr_adjust[epoch]
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('Updating learning rate to {}'.format(lr))


8

『绘图』

plt.figure(figsize=(12,4))
plt.subplot(121)
plt.plot(train_loss[:])
plt.title("train_loss")
plt.subplot(122)
plt.plot(train_epochs_loss[1:],'-o',label="train_loss")
plt.plot(valid_epochs_loss[1:],'-o',label="valid_loss")
plt.title("epochs_loss")
plt.legend()
plt.show()


9

『预测』

# 此处可定义一个预测集的Dataloader。也可以直接将你的预测数据reshape,添加batch_size=1
Your_model.eval()
predict = Your_model(data)


技术交流群邀请函

△长按添加小助手

扫描二维码添加小助手微信

请备注:姓名-学校/公司-研究方向
(如:小张-哈工大-对话系统)
即可申请加入自然语言处理/Pytorch等技术交流群

关于我们

MLNLP 社区 是由国内外机器学习与自然语言处理学者联合构建的民间学术社区,目前已经发展为国内外知名的机器学习与自然语言处理社区,旨在促进机器学习,自然语言处理学术界、产业界和广大爱好者之间的进步。
社区可以为相关从业者的深造、就业及研究等方面提供开放交流平台。欢迎大家关注和加入我们。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/147506
 
214 次点击