社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

【直播】基于数据和机器学习的通用湍流模型研究

蔻享学术 • 2 年前 • 753 次点击  



报告名称:

基于数据和机器学习的通用湍流模型研究

报告时间

2023年2月9日 9:30

报告嘉宾:

杨翔 教授(美国宾州州立大学)

主办单位:

浙江大学航空航天学院


直播通道

蔻享学术直播间

识别二维码,即可观看直播。

报告人介绍

Dr. Xiang Yang is an Assistant Professor in the Mechanical Engineering Department at the Pennsylvania State University. He received his Ph.D. in Mechanical Engineering from Johns Hopkins University in 2016. After that, Yang joined the Center for Turbulence Research in 2016 as a Postdoctoral Research Fellow. He became a faculty member in the Mechanical Engineering Department at Penn State in 2018 and has been there since then. His group conducts high-fidelity numerical simulations, builds physics- and data-based models, and finds efficient solutions for real-world engineering problems. His group uses tools including direct numerical simulation, large-eddy simulation, Reynolds-averaged Navier Stokes, and machine learning.

报告简介

Abstract This talk will explore the possibility of data-enabled turbulence models for general purposes. We require that the benefits offered by the developed machine learning model in one flow not be at the expense of its performance in other flows. As such, a CFD practitioner can pick up the model, as it is, and use it for predictive modeling without worrying about detrimental effects. We do this through progressive machine learning. The modeling framework builds on two theorems, the extrapolation theorem and the neutral neural network theorem. The former theorem allows one to control how a neural network extrapolates, and the latter enables one to progressively improve an existing model to account for more complex physics. We will apply this modeling framework to re-calibrate the Spalart-Allmaras model. We will show that the re-calibrated model offers improvements in separated flows while preserves known empiricisms.




推荐阅读

第十二届全国流体力学青年研讨会>>

【视频回放】第五届 CMHL 船舶与海洋工程计算水动力学研讨会>>

【力学者说系列报告】南方科技大学王建春副教授:基于机器学习的湍流模型研究进展>>

【重磅发布】蔻享会议服务系统正式上线>>

徐宗本院士:从机器学习先验假设到机器学习自动化>>

当人工智能遇到时空数据:概念、方法和应用>>

第一届中国机器学习与科学应用大会>>

城市信息模型(CIM)· 大咖说 | 第一期>>

Cell Press Live: 机器学习在能源领域的应用>>

刘雳宇:集群机器人作为生物进化系统的模型 | 中国物理学会>>

编辑:黄琦

蔻享学术 平台


蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。

识别二维码,

下载 蔻享APP  查看最新资源数据。


点击阅读原文,查看更多精彩报告!

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/152028
 
753 次点击