去年一月份,根据某项目的要求,我们需要从预报的WRFOUT文件中提取500mb等压线、风羽集合、等压线集合以及台风路径,并以json文件格式呈现。这种json文件可以直接在网页端显示,或者在我们自行创建的系统中展示。它具有较高的地理匹配度,与以往使用Python绘制图片的方法有明显不同。我将提供处理500mb等压线等内容的代码注解,所有代码都将通过百度网盘分享。
首先是导入各种python库:
import xarray as xr
import numpy as np
import math
import netCDF4 as nc
from netCDF4 import Dataset,num2date,date2num
from wrf import getvar,ll_to_xy,interplevel,vinterp,get_cartopy,latlon_coords,cartopy_xlim,cartopy_ylim
from math import atan2,pi
import pandas as pd
import datetime
import wrf
import geopandas as gpd
import salem
from salem.utils import get_demo_file
from matplotlib import colors
import matplotlib.pyplot as plt
import matplotlib as mpl
from datetime import datetime,timedelta
from cartopy.io.shapereader import Reader
import cartopy.crs as crs
import matplotlib.ticker as mticker
from salem.utils import get_demo_file
from scipy.interpolate import griddata
from salem import cache_dir, sample_data_dir
import json
其次通过读取WRFOUT数据提取500mb等高线、风羽集合、等压线集合的数据:
Ht_500mb=[]
Wspd10=[]
Wdir10=[]
Slp=[]
timerange=pd.date_range(start='2019-08-05 18:00:00',end='2019-08-11 12:00:00',freq='H')
for t in range(0,len(timerange),6):
print(str(timerange[t]))
t1=str(timerange[t]).replace(' ','_').replace(':','_')
ncfile = Dataset("./wrfout_d02_2019-08-05_18:00:00")
lat=getvar(ncfile, "XLAT",timeidx=0).data
lon=getvar(ncfile, "XLONG",timeidx=0).data
time=getvar(ncfile,"times",timeidx=t).data
z = getvar(ncfile, "z",timeidx=t)
p = getvar(ncfile, "pressure",timeidx=t)
# Compute the 500 MB Geopotential Height
ht_500mb = (interplevel(z, p, 500.)/10).data
slp=getvar(ncfile,"slp",timeidx=t).data
wspd10=getvar(ncfile,"wspd10",timeidx=t).data
wdir10=getvar(ncfile,"wdir10",timeidx=t).data
llat1=np.arange(1.51,40.34,0.03)
llon1=np.arange(108.00,130.93,0.03)
llon,llat=np.meshgrid(llon1,llat1)
llat2=np.arange(1.51,40.34,1)
llon2=np.arange(108.00,130.93,1)
llon_wind,llat_wind=np.meshgrid(llon2,llat2)
#插值数据到指定的经纬度
ht_500mb_grid=griddata((lat.ravel(),lon.ravel()),ht_500mb.ravel(),(llat,llon), method='linear')
wspd10_grid=griddata((lat.ravel(),lon.ravel()),wspd10.ravel(),(llat_wind,llon_wind), method='linear')
wdir10_grid=griddata((lat.ravel(),lon.ravel()),wdir10.ravel(),(llat_wind,llon_wind), method='linear')
slp_grid=griddata((lat.ravel(),lon.ravel()),slp.ravel(),(llat,llon), method='linear')
Ht_500mb.append(ht_500mb_grid[np.newaxis,:])
Wspd10.append(wspd10_grid[np.newaxis,:])
Wdir10.append(wdir10_grid[np.newaxis,:])
Slp.append(slp_grid[np.newaxis,:])
Ht_500mb=np.concatenate(Ht_500mb, axis=0)
Wspd10=np.concatenate(Wspd10, axis=0)
Wdir10=np.concatenate(Wdir10, axis=0)
Slp=np.concatenate(Slp, axis=0)
timerange=pd.date_range(start='2019-08-05 18:00:00',end='2019-08-11 12:00:00',freq='6H')
ht500mb=xr.Dataset()
ht500mb['time']=(['time'],timerange)
ht500mb['latitude']=(['latitude'],llat1)
ht500mb['longitude']=(['longitude'],llon1)
ht500mb['ht_500mb']=(['time','latitude','longitude'],Ht_500mb)
ht500mb.to_netcdf('./ht_500mb_d02.nc')
spd=xr.Dataset()
spd['time']=(['time'],timerange)
spd['latitude']=(['latitude'],llat2)
spd['longitude']=(['longitude'],llon2)
spd['SPD10']=(['time','latitude','longitude'],Wspd10)
spd['DIR10']=(['time','latitude','longitude'],Wdir10)
spd.to_netcdf('./spd_d02.nc')
ps=xr.Dataset()
ps['time']=(['time'],timerange)
ps['latitude']=(['latitude'],llat1)
ps['longitude']=(['longitude'],llon1)
ps['PS']=(['time','latitude','longitude'],Slp)
ps.to_netcdf('./slp_d02.nc')
利用salem掩膜陆地数据(可选可不选,看个人需求)并输出风羽json文件:
#风json
spd_cut=xr.open_dataset('./spd_d02.nc')#2022.1.17add
#spd_cut=spd.salem.roi(shape=shp)
#spd_cut.to_netcdf('./spd_d02_cut.nc')
#spd_cut=xr.open_dataset('./spd_d02_cut.nc')
spd10_cut=spd_cut['SPD10'].data
dir10_cut=spd_cut['DIR10'].data
lon=spd_cut['longitude'].data
lat=spd_cut['latitude'].data
lon,lat=np.meshgrid(lon,lat)
for j in range(len(timerange)):
data=pd.DataFrame()
data['SPD10']=spd10_cut[j,:,:].ravel()
data['DIR10']=dir10_cut[j,:,:].ravel()
data['lat']=lat.ravel()
data['lon']=lon.ravel()
data1=data.dropna(axis=0,how='any').values
windjson=[]
for i in range(data1.shape[0]):
paths = {}
paths['coordinates']=[data1[i,3],data1[i,2]]
paths['angle']=data1[i,1]
paths['power']=data1[i,0]
windjson.append(paths)
buffer={}
buffer["currentDirection"]=[windjson]
filename='./json/2022_风{:}.json'.format(str(timerange[j]).replace(' ','_').replace(':','_'))
with open(filename,'w') as file_obj:
json.dump(buffer,file_obj, indent=4, separators=(',', ': '))
利用salem掩膜陆地数据(可选可不选,看个人需求)并输出500mb等高线和等压线集合json文件,在这一步之前,需要介绍从等压线绘图中提取等压线数据的函数文件:
def get_contour_slp(c):
contours = []
idx = 0
for cc,vl in zip(c.collections,c.levels):
# print(cc.get_paths())
# for each separate section of the contour line
for pp in cc.get_paths():
# print(pp)
paths = {}
paths["type"]="Feature"
paths["properties"]={"value":vl} # vl 是属性值
xy = []
# for each segment of that section
for vv in pp.iter_segments():
xy.append([np.round(vv[0][0],5),np.round(vv[0][1],5)]) #vv[0] 是等值线上一个点的坐标,是 1 个 形如 array[12.0,13.5] 的 ndarray。
if xy[0]==xy[-1]:
paths["geometry"]={"type":'Polygon','coordinates':[]}
paths["geometry"]["coordinates"]=[xy]
else:
paths["geometry"]={"type":'LineString','coordinates':[]}
paths["geometry"]["coordinates"]=xy
contours.append(paths)
idx +=1
return contours
#############################
def get_contour_ht500mb(c):
contours = []
idx = 0
# for each contour line
#print(cn.levels)
for cc,vl in zip(c.collections,c.levels):
# print(cc.get_paths())
# for each separate section of the contour line
for pp in cc.get_paths():
# print(pp)
paths = {}
paths["type"]="Feature"
paths["properties"]={"value":vl} # vl 是属性值
xy = []
# for each segment of that section
for vv in pp.iter_segments():
xy.append([float(vv[0][0]),float(vv[0][1])]) #vv[0] 是等值线上一个点的坐标,是 1 个 形如 array[12.0,13.5] 的 ndarray。
if xy[0]==xy[-1]:
paths["geometry"]={"type":'Polygon','coordinates':[]}
paths["geometry"]["coordinates"]=[xy]
else:
paths["geometry"]={"type":'LineString','coordinates':[]}
paths["geometry"]["coordinates"]=xy
contours.append(paths)
idx +=1
return contours
最后提取500mb等高线和等压线集合json文件代码:
shp = gpd.read_file('./ne_10m_ocean_scale_rank/ne_10m_ocean_scale_rank.shp')
ht500mb1=xr.open_dataset('./ht_500mb_d02.nc')#2022.1.17add
#ht500mb_cut=ht500mb.salem.roi(shape=shp)
#ht500mb_cut.to_netcdf('./ht_500mb_d02_cut.nc')
#ht500mb_cut=xr.open_dataset('./ht_500mb_d02_cut.nc')
#ht500mb=ht500mb_cut['ht_500mb'].data
#lon=ht500mb_cut['longitude'].data
#lat=ht500mb_cut['latitude'].data
#2022.1.17add
ht500mb=ht500mb1['ht_500mb'].data
lon=ht500mb1['longitude'].data
lat=ht500mb1['latitude'].data
ps1=xr.open_dataset('./slp_d02.nc')#2022.1.17add
#ps_cut=ps.salem.roi(shape=shp)
#ps_cut.to_netcdf('./slp_d02_cut.nc')
#ps_cut=xr.open_dataset('./slp_d02_cut.nc')
#slp=ps_cut['PS'].data
#2022.1.17add
slp=ps1['PS'].data
# contour 函数是绘制等值线的方法,它将根据输入的矩阵自动计算等值线的位置
for i in range(len(timerange)):
fig = plt.figure(figsize=(8, 10))
ax = fig.add_subplot(projection=crs.PlateCarree())
ocean=Reader(r'./ne_10m_land_scale_rank/ne_10m_land_scale_rank.shp').geometries()
ax.add_geometries(ocean,crs.PlateCarree(),facecolor='none',edgecolor='k',linewidth=0.5)
c_ht500mb = ax.contour(lon, # x轴坐标
lat, # y轴坐标
ht500mb[i,:,:], # 选取550hpa位置的位势高度数据
# slp[-1,:,:],
levels=16, # 等值线数量
colors='blue',
linewidths=1)
# plt.show()
def get_contour_ht500mb(c):
contours = []
idx = 0
# for each contour line
#print(cn.levels)
for cc,vl in zip(c.collections,c.levels):
# print(cc.get_paths())
# for each separate section of the contour line
for pp in cc.get_paths():
# print(pp)
paths = {}
paths["type"]="Feature"
paths["properties"]={"value":vl} # vl 是属性值
xy = []
# for each segment of that section
for vv in pp.iter_segments():
xy.append([float(vv[0][0]),float(vv[0][1])]) #vv[0] 是等值线上一个点的坐标,是 1 个 形如 array[12.0,13.5] 的 ndarray。
if xy[0]==xy[-1]:
paths["geometry"]={"type":'Polygon','coordinates':[]}
paths["geometry"]["coordinates"]=[xy]
else:
paths["geometry"]={"type":'LineString','coordinates':[]}
paths["geometry"]["coordinates"]=xy
contours.append(paths)
idx +=1
return contours
buffer={}
buffer["type"]="FeatureCollection"
buffer["features"]=get_contour_ht500mb(c_ht500mb)
filename='./json/2022_500毫巴{:}.json'.format(str(timerange[i]).replace(' ','_').replace(':','_'))
with open(filename,'w') as file_obj:
json.dump(buffer,file_obj, indent=4, separators=(',', ': '))
fig = plt.figure(figsize=(8, 10))
ax = fig.add_subplot(projection=crs.PlateCarree())
ocean=Reader(r'./ne_10m_land_scale_rank/ne_10m_land_scale_rank.shp').geometries()
ax.add_geometries(ocean,crs.PlateCarree(),facecolor='none',edgecolor='k',linewidth=0.5)
c_slp = ax.contour(lon, # x轴坐标
lat, # y轴坐标
# ht500mb[-1,:,:], # 选取550hpa位置的位势高度数据
slp[i,:,:],
levels=16, # 等值线数量
colors='blue',
linewidths=1)
def get_contour_slp(c):
contours = []
idx = 0
for cc,vl in zip(c.collections,c.levels):
# print(cc.get_paths())
# for each separate section of the contour line
for pp in cc.get_paths():
# print(pp)
paths = {}
paths["type"]="Feature"
paths["properties"]={"value":vl} # vl 是属性值
xy = []
# for each segment of that section
for vv in pp.iter_segments():
xy.append([np.round(vv[0][0],5),np.round(vv[0][1],5)]) #vv[0] 是等值线上一个点的坐标,是 1 个 形如 array[12.0,13.5] 的 ndarray。
if xy[0]==xy[-1]:
paths["geometry"]={"type":'Polygon','coordinates':[]}
paths["geometry"]["coordinates"]=[xy]
else:
paths["geometry"]={"type":'LineString','coordinates':[]}
paths["geometry"]["coordinates"]=xy
contours.append(paths)
idx +=1
return contours
buffer={}
buffer["type"]="FeatureCollection"
buffer["features"]=get_contour_slp(c_slp)
filename='./json/2022_气压{:}.json'.format(str(timerange[i]).replace(' ','_').replace(':','_'))
with open(filename,'w') as file_obj:
json.dump(buffer,file_obj, indent=4, separators=(',', ': '))
#高低气压坐标以及数值.json
high_value=[]
high_points=[]
low_value=[]
low_points=[]
highlow={'low':{},'high':{}}
for path in get_contour_slp(c_slp):
#print(path)
if path['properties']['value'] in c_slp.levels[-2:]:
if path['geometry']['coordinates'][0] == path['geometry']['coordinates'][-1]:
print(path)
high_value.append(path['properties']['value'])
high_points.append([np.mean(np.array(path['geometry']['coordinates']).reshape(-1,2)[:,0]),np.mean(np.array(path['geometry']['coordinates']).reshape(-1,2)[:,1])])
if path['properties']['value'] in c_slp.levels[:2]:
if path['geometry']['coordinates'][0] == path['geometry']['coordinates'][-1]:
print(path)
low_value.append(path['properties']['value'])
low_points.append([np.mean(np.array(path['geometry']['coordinates']).reshape(-1,2)[:,0]),np.mean(np.array(path['geometry']['coordinates']).reshape(-1,2)[:,1])])
highlow['high']={'value':high_value,'points':high_points}
highlow['low']={'value':low_value,'points':low_points}
filename='./json/2022_高低气压坐标以及数值{:}.json'.format(str(timerange[i]).replace(' ','_').replace(':','_'))
with open(filename,'w') as file_obj:
json.dump(highlow,file_obj, indent=4, separators=(',', ': '))
在这个http://geojson.io/网站上我们可以将500mb等高线和等压线的json文件导入,来看到我们的效果图:


其他的json文件目前还不支持在该网站的显示,需要系统自行适配。台风路径的json文件绘制代码过于冗长,其原理类似,即将最低气压坐标点放入json的字典中(后续将单独讲解一下),并根据10米最大风速规则添加上台风属于'热带低压'、'热带风暴'、'强热带风暴'、'台风'、'强台风'或'超强台风'中的哪一种?另外,还绘制了水汽通量图和台风路径图来验证提取的数据是否准确?



声明:欢迎转载、转发本号原创内容,可留言区留言或者后台联系小编(微信:gavin7675)进行授权。气象学家公众号转载信息旨在传播交流,其内容由作者负责,不代表本号观点。文中部分图片来源于网络,如涉及作品内容、版权和其他问题,请后台联系小编处理。