近日,北邮GAMMA Lab师生与国内外多名专家学者联合发布了名为“Towards Graph Foundation Models: A Survey and Beyond”的文章,探讨了图基础模型的概念、实现图基础模型的潜在方案和未来研究方向。这可能是第一篇关于图基础模型的综述。 研究领域:图神经网络,图基础模型,大语言模型,涌现刘佳玮| 作者北邮 GAMMA Lab | 来源 以GPT-4为代表的基础模型已经在自然语言处理、计算机视觉等诸多领域引起了轰动,这也吸引着图学习领域研究者们的关注。另一方面,图机器学习经历了从浅层方法到深度学习方法的范式转变,而当前的深度图学习方法也逐渐暴露出了表达能力、泛化性不足的问题,使模型无法适用于更多的图数据和更广泛的图任务。图学习是否也会迎来“图基础模型”的下一代学习范式呢? 近日,北邮GAMMA Lab师生与国内外多名专家学者联合发布了名为“Towards Graph Foundation Models: A Survey and Beyond”的文章,探讨了图基础模型的概念、实现图基础模型的潜在方案和未来研究方向。
标题:Towards Graph Foundation Models: A Survey and Beyond作者:Jiawei Liu*, Cheng Yang*, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, and Chuan Shi链接:https://arxiv.org/pdf/2310.11829.pdf
现实世界中大量问题的解决依赖于算法的设计与求解。传统算法由人类专家设计,而随着人工智能技术不断发展,算法自动学习算法的案例日益增多,如以神经网络为代表的的人工智能算法,这是算法神经化求解的缘由。在算法神经化求解方向上,图神经网络是一个强有力的工具,能够充分利用图结构的特性,实现对高复杂度算法的高效近似求解。基于图神经网络的复杂系统优化与控制将会是大模型热潮之后新的未来方向。 为了探讨图神经网络在算法神经化求解的发展与现实应用,集智俱乐部联合国防科技大学系统工程学院副教授范长俊、中国人民大学高瓴人工智能学院助理教授黄文炳,共同发起「图神经网络与组合优化」读书会。读书会将聚焦于图神经网络与算法神经化求解的相关领域,包括神经算法推理、组合优化问题求解、几何图神经网络,以及算法神经化求解在 AI for Science 中的应用等方面,希望为参与者提供一个学术交流平台,激发参与者的学术兴趣,进一步推动相关领域的研究和应用发展。欢迎感兴趣的朋友报名参与! 详情请见: 加速经典算法效率,突破现实技术瓶颈:图神经网络与组合优化读书会启动