今天给大家介绍自 2014 年以来,计算机视觉 CV 领域图像分类方向文献和代码的超全总结和列表!总共涉及 36 种 ConvNet 模型。该 GitHub 项目作者是 weiaicunzai,项目地址是:https://github.com/weiaicunzai/awesome-image-classification我相信图像识别是深入到其它机器视觉领域一个很好的起点,特别是对于刚刚入门深度学习的人来说。当我初学 CV 时,犯了很多错。我当时非常希望有人能告诉我应该从哪一篇论文开始读起。到目前为止,似乎还没有一个像 deep-learning-object-detection 这样的 GitHub 项目。因此,我决定建立一个 GitHub 项目,列出深入学习中关于图像分类的论文和代码,以帮助其他人。对于学习路线,我的个人建议是,对于那些刚入门深度学习的人,可以试着从 vgg 开始,然后是 googlenet、resnet,之后可以自由地继续阅读列出的其它论文或切换到其它领域。基于简化的目的,我只从论文中列举出在 ImageNet 上准确率最高的 top1 和 top5。注意,这并不一定意味着准确率越高,一个网络就比另一个网络更好。因为有些网络专注于降低模型复杂性而不是提高准确性,或者有些论文只给出 ImageNet 上的 single crop results,而另一些则给出模型融合或 multicrop results。- ImageNet top1 acc:论文中基于 ImageNet 数据集最好的 top1 准确率
- ImageNet top5 acc:论文中基于 ImageNet 数据集最好的 top5 准确率
- Published In:论文发表在哪个会议或期刊
Very Deep Convolutional Networks for Large-Scale Image Recognition. Karen Simonyan, Andrew Zisserman pdf: https://arxiv.org/abs/1409.1556 https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py
Going Deeper with Convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich pdf: https://arxiv.org/abs/1409.4842 code: unofficial-tensorflow : https://github.com/conan7882/GoogLeNet-Inception https://github.com/lim0606/caffe-googlenet-bnDelving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun pdf: https://arxiv.org/abs/1502.01852 code: unofficial-chainer : https://github.com/nutszebra/prelu_netDeep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun pdf: https://arxiv.org/abs/1512.03385 https://github.com/facebook/fb.resnet.torch https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py https://github.com/raghakot/keras-resnet code: unofficial-tensorflow : https://github.com/ry/tensorflow-resnet
Identity Mappings in Deep Residual Networks Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun pdf: https://arxiv.org/abs/1603.05027 https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua https://github.com/KaimingHe/resnet-1k-layers code: unoffical-pytorch : https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py https://github.com/tornadomeet/ResNetRethinking the Inception Architecture for Computer Vision Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna pdf: https://arxiv.org/abs/1512.00567 https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py
7. Inceptionv4 && Inception-ResNetv2 Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi pdf: https://arxiv.org/abs/1602.07261 https://github.com/kentsommer/keras-inceptionV4 https://github.com/titu1994/Inception-v4 https://github.com/yuyang-huang/keras-inception-resnet-v2
Resnet in Resnet: Generalizing Residual Architectures Sasha Targ, Diogo Almeida, Kevin Lyman pdf: https://arxiv.org/abs/1603.08029 code: unofficial-tensorflow : https://github.com/SunnerLi/RiR-Tensorflow code: unofficial-chainer : https://github.com/nutszebra/resnet_in_resnet9. Stochastic Depth ResNet Deep Networks with Stochastic Depth Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger pdf: https://arxiv.org/abs/1603.09382 https://github.com/yueatsprograms/Stochastic_Depth code: unofficial-chainer : https://github.com/yasunorikudo/chainer-ResDrop https://github.com/dblN/stochastic_depth_kerasSergey Zagoruyko, Nikos Komodakis pdf: https://arxiv.org/abs/1605.07146 https://github.com/szagoruyko/wide-residual-networks
code: unofficial-pytorch : https://github.com/xternalz/WideResNet-pytorch https://github.com/asmith26/wide_resnets_keras code: unofficial-pytorch : https://github.com/meliketoy/wide-resnet.pytorchSqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer pdf: https://arxiv.org/abs/1602.07360 https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py https://github.com/DeepScale/SqueezeNet https://github.com/rcmalli/keras-squeezenet https://github.com/songhan/SqueezeNet-Residualpdf: https://arxiv.org/abs/1703.01513 code: unofficial-tensorflow : https://github.com/aqibsaeed/Genetic-CNNDesigning Neural Network Architectures using Reinforcement LearningBowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar pdf: https://arxiv.org/abs/1703.01513
code: official : https://github.com/bowenbaker/metaqnnDeep Pyramidal Residual Networks Dongyoon Han, Jiwhan Kim, Junmo Kim pdf: https://arxiv.org/abs/1610.02915 https://github.com/jhkim89/PyramidNet code: unofficial-pytorch : https://github.com/dyhan0920/PyramidNet-PyTorchDensely Connected Convolutional Networks Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
pdf: https://arxiv.org/abs/1608.06993 https://github.com/liuzhuang13/DenseNet https://github.com/titu1994/DenseNet https://github.com/shicai/DenseNet-Caffe code: unofficial-tensorflow : https://github.com/YixuanLi/densenet-tensorflow code: unofficial-pytorch : https://github.com/YixuanLi/densenet-tensorflow code: unofficial-pytorch : https://github.com/bamos/densenet.pytorch https://github.com/flyyufelix/DenseNet-Keras
FractalNet: Ultra-Deep Neural Networks without Residuals
Gustav Larsson, Michael Maire, Gregory Shakhnarovich pdf: https://arxiv.org/abs/1605.07648 https://github.com/gustavla/fractalnet https://github.com/snf/keras-fractalnet code: unofficial-tensorflow : https://github.com/tensorpro/FractalNetAggregated Residual Transformations for Deep Neural Networks Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He pdf: https://arxiv.org/abs/1611.05431 https://github.com/facebookresearch/ResNeXt code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py code: unofficial-pytorch : https://github.com/prlz77/ResNeXt.pytorch https://github.com/titu1994/Keras-ResNeXt code: unofficial-tensorflow : https://github.com/taki0112/ResNeXt-Tensorflow code: unofficial-tensorflow : https://github.com/wenxinxu/ResNeXt-in-tensorflow
Interleaved Group Convolutions for Deep Neural Networks Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang pdf: https://arxiv.org/abs/1707.02725 https://github.com/hellozting/InterleavedGroupConvolutions18. Residual Attention Network Residual Attention Network for Image Classification Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang pdf: https://arxiv.org/abs/1704.06904 https://github.com/fwang91/residual-attention-network code: unofficial-pytorch : https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch https://github.com/PistonY/ResidualAttentionNetwork https://github.com/koichiro11/residual-attention-networkXception: Deep Learning with Depthwise Separable Convolutionspdf: https://arxiv.org/abs/1610.02357 code: unofficial-pytorch : https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py code: unofficial-tensorflow : https://github.com/kwotsin/TensorFlow-Xception https://github.com/yihui-he/Xception-caffe code: unofficial-pytorch : https://github.com/tstandley/Xception-PyTorch code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam pdf: https://arxiv.org/abs/1704.04861 code: unofficial-tensorflow : https://github.com/Zehaos/MobileNet https://github.com/shicai/MobileNet-Caffe code: unofficial-pytorch : https://github.com/marvis/pytorch-mobilenet code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py
PolyNet: A Pursuit of Structural Diversity in Very Deep NetworksXingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin pdf: https://arxiv.org/abs/1611.05725 https://github.com/open-mmlab/polynet
Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng pdf: https://arxiv.org/abs/1707.01629 https://github.com/cypw/DPNs https://github.com/titu1994/Keras-DualPathNetworks code: unofficial-pytorch : https://github.com/oyam/pytorch-DPNs code: unofficial-pytorch :
https://github.com/rwightman/pytorch-dpn-pretrainedPractical Block-wise Neural Network Architecture Generation Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu pdf: https://arxiv.org/abs/1708.05552Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng pdf: https://arxiv.org/abs/1703.02180 https://github.com/cypw/CRU-Net https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun pdf: https://arxiv.org/abs/1707.01083 code: unofficial-tensorflow : https://github.com/MG2033/ShuffleNet code: unofficial-pytorch : https://github.com/jaxony/ShuffleNet https://github.com/farmingyard/ShuffleNet https://github.com/scheckmedia/keras-shufflenet
CondenseNet: An Efficient DenseNet using Learned Group ConvolutionsGao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger pdf: https://arxiv.org/abs/1711.09224 https://github.com/ShichenLiu/CondenseNet code: unofficial-tensorflow : https://github.com/markdtw/condensenet-tensorflow
Learning Transferable Architectures for Scalable Image RecognitionBarret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le pdf: https://arxiv.org/abs/1707.07012 https://github.com/titu1994/Keras-NASNet code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py code: unofficial-pytorch : https://github.com/wandering007/nasnet-pytorch code: unofficial-tensorflow : https://github.com/yeephycho/nasnet-tensorflow
MobileNetV2: Inverted Residuals and Linear Bottlenecks Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen pdf: https://arxiv.org/abs/1801.04381 https://github.com/xiaochus/MobileNetV2 code: unofficial-pytorch : https://github.com/Randl/MobileNetV2-pytorch code: unofficial-tensorflow : https://github.com/neuleaf/MobileNetV2
IGCV2: Interleaved Structured Sparse Convolutional Neural NetworksGuotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi pdf: https://arxiv.org/abs/1804.06202
Hierarchical Representations for Efficient Architecture Search Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu pdf: https://arxiv.org/abs/1711.00436Progressive Neural Architecture Search Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy pdf: https://arxiv.org/abs/1712.00559 https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py code: unofficial-pytorch : https://github.com/chenxi116/PNASNet.pytorch code: unofficial-tensorflow : https://github.com/chenxi116/PNASNet.TFRegularized Evolution for Image Classifier Architecture Search Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le pdf: https://arxiv.org/abs/1802.01548 https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net
Squeeze-and-Excitation Networks Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu pdf: https://arxiv.org/abs/1709.01507 https://github.com/hujie-frank/SENet code: unofficial-pytorch : https://github.com/moskomule/senet.pytorch code: unofficial-tensorflow : https://github.com/taki0112/SENet-Tensorflow https://github.com/shicai/SENet-Caffe https://github.com/bruinxiong/SENet.mxnetShuffleNet V2: Practical Guidelines for Efficient CNN Architecture DesignNingning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun pdf: https://arxiv.org/abs/1807.11164 code: unofficial-pytorch : https://github.com/Randl/ShuffleNetV2-pytorch https://github.com/opconty/keras-shufflenetV2 code: unofficial-pytorch : https://github.com/Bugdragon/ShuffleNet_v2_PyTorch https://github.com/wolegechu/ShuffleNetV2.Caffe2
IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang
pdf: https://arxiv.org/abs/1806.00178 https://github.com/homles11/IGCV3 code: unofficial-pytorch : https://github.com/xxradon/IGCV3-pytorch code: unofficial-tensorflow : https://github.com/ZHANG-SHI-CHANG/IGCV3MnasNet: Platform-Aware Neural Architecture Search for MobileMingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le pdf: https://arxiv.org/abs/1807.11626 code: unofficial-pytorch : https://github.com/AnjieZheng/MnasNet-PyTorch https://github.com/LiJianfei06/MnasNet-caffe https://github.com/chinakook/Mnasnet.MXNet https://github.com/Shathe/MNasNet-Keras-Tensorflow欢迎加入机器学习爱好者微信群一起和同行交流,目前有机器学习交流群、博士群、博士申报交流、CV、NLP等微信群,请扫描下面的微信号加群,备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~(也可以加入机器学习交流qq群772479961)
