社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

​【深度学习】CV 图像分类常见的 36 个模型

机器学习初学者 • 1 年前 • 201 次点击  
文章:新机器视觉
今天给大家介绍自 2014 年以来,计算机视觉 CV 领域图像分类方向文献和代码的超全总结和列表!总共涉及 36 种 ConvNet 模型。该 GitHub 项目作者是 weiaicunzai,项目地址是:
https://github.com/weiaicunzai/awesome-image-classification

背景

我相信图像识别是深入到其它机器视觉领域一个很好的起点,特别是对于刚刚入门深度学习的人来说。当我初学 CV 时,犯了很多错。我当时非常希望有人能告诉我应该从哪一篇论文开始读起。到目前为止,似乎还没有一个像 deep-learning-object-detection 这样的 GitHub 项目。因此,我决定建立一个 GitHub 项目,列出深入学习中关于图像分类的论文和代码,以帮助其他人。
对于学习路线,我的个人建议是,对于那些刚入门深度学习的人,可以试着从 vgg 开始,然后是 googlenet、resnet,之后可以自由地继续阅读列出的其它论文或切换到其它领域。

性能表

基于简化的目的,我只从论文中列举出在 ImageNet 上准确率最高的 top1 和 top5。注意,这并不一定意味着准确率越高,一个网络就比另一个网络更好。因为有些网络专注于降低模型复杂性而不是提高准确性,或者有些论文只给出 ImageNet 上的 single crop results,而另一些则给出模型融合或 multicrop results。
关于性能表的标注:
  • ConvNet:卷积神经网络的名称
  • ImageNet top1 acc:论文中基于 ImageNet 数据集最好的 top1 准确率
  • ImageNet top5 acc:论文中基于 ImageNet 数据集最好的 top5 准确率
  • Published In:论文发表在哪个会议或期刊

论文&代码


1. VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition. 
Karen Simonyan, Andrew Zisserman 

pdf: https://arxiv.org/abs/1409.1556 
code: torchvision : 
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py 
code: keras-applications : 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py 
code: keras-applications : 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

2. GoogleNet

Going Deeper with Convolutions 
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich 

pdf: https://arxiv.org/abs/1409.4842 
code: unofficial-tensorflow : 
https://github.com/conan7882/GoogLeNet-Inception 
code: unofficial-caffe : 
https://github.com/lim0606/caffe-googlenet-bn

3. PReLU-nets 

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 

pdf: https://arxiv.org/abs/1502.01852 
code: unofficial-chainer : 
https://github.com/nutszebra/prelu_net

4. ResNet 

Deep Residual Learning for Image Recognition 
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 

pdf: https://arxiv.org/abs/1512.03385 
code: facebook-torch : 
https://github.com/facebook/fb.resnet.torch 
code: torchvision : 
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py 
code: keras-applications : 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py 
code: unofficial-keras : 
https://github.com/raghakot/keras-resnet 
code: unofficial-tensorflow : 
https://github.com/ry/tensorflow-resnet

5. PreActResNet 

Identity Mappings in Deep Residual Networks 
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 

pdf: https://arxiv.org/abs/1603.05027 
code: facebook-torch : 
https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua 
code: official : 
https://github.com/KaimingHe/resnet-1k-layers 
code: unoffical-pytorch : 
https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py 
code: unoffical-mxnet : 
https://github.com/tornadomeet/ResNet

6. Inceptionv3
 
Rethinking the Inception Architecture for Computer Vision 
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna 

pdf: https://arxiv.org/abs/1512.00567 
code: torchvision : 
https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py 
code: keras-applications : 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py

7. Inceptionv4 && Inception-ResNetv2 

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi 

pdf: https://arxiv.org/abs/1602.07261 
code: unofficial-keras : 
https://github.com/kentsommer/keras-inceptionV4 
code: unofficial-keras : 
https://github.com/titu1994/Inception-v4 
code: unofficial-keras : 
https://github.com/yuyang-huang/keras-inception-resnet-v2

8. RIR

Resnet in Resnet: Generalizing Residual Architectures 
Sasha Targ, Diogo Almeida, Kevin Lyman 

pdf: https://arxiv.org/abs/1603.08029 
code: unofficial-tensorflow : 
https://github.com/SunnerLi/RiR-Tensorflow 
code: unofficial-chainer : 
https://github.com/nutszebra/resnet_in_resnet

9. Stochastic Depth ResNet 

Deep Networks with Stochastic Depth 
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger 

pdf: https://arxiv.org/abs/1603.09382 
code: unofficial-torch : 
https://github.com/yueatsprograms/Stochastic_Depth 
code: unofficial-chainer : 
https://github.com/yasunorikudo/chainer-ResDrop 
code: unofficial-keras : 
https://github.com/dblN/stochastic_depth_keras

10. WRN 

Wide Residual Networks 
Sergey Zagoruyko, Nikos Komodakis 

pdf: https://arxiv.org/abs/1605.07146 
code: official : 
https://github.com/szagoruyko/wide-residual-networks 
code: unofficial-pytorch : 
https://github.com/xternalz/WideResNet-pytorch 
code: unofficial-keras : 
https://github.com/asmith26/wide_resnets_keras 
code: unofficial-pytorch : 
https://github.com/meliketoy/wide-resnet.pytorch

11. squeezenet 

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size 
Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer 

pdf: https://arxiv.org/abs/1602.07360 
code: torchvision : 
https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py 
code: unofficial-caffe : 
https://github.com/DeepScale/SqueezeNet 
code: unofficial-keras : 
https://github.com/rcmalli/keras-squeezenet 
code: unofficial-caffe : 
https://github.com/songhan/SqueezeNet-Residual

12. GeNet 

Genetic CNN 
Lingxi Xie, Alan Yuille 

pdf: https://arxiv.org/abs/1703.01513 
code: unofficial-tensorflow : 
https://github.com/aqibsaeed/Genetic-CNN

12. MetaQNN 

Designing Neural Network Architectures using Reinforcement Learning
Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar 

pdf: https://arxiv.org/abs/1703.01513 
code: official : https://github.com/bowenbaker/metaqnn

13. PyramidNet 

Deep Pyramidal Residual Networks 
Dongyoon Han, Jiwhan Kim, Junmo Kim 

pdf: https://arxiv.org/abs/1610.02915 
code: official : 
https://github.com/jhkim89/PyramidNet 
code: unofficial-pytorch : 
https://github.com/dyhan0920/PyramidNet-PyTorch

14. DenseNet 

Densely Connected Convolutional Networks 
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger 

pdf: https://arxiv.org/abs/1608.06993 
code: official : 
https://github.com/liuzhuang13/DenseNet 
code: unofficial-keras : 
https://github.com/titu1994/DenseNet 
code: unofficial-caffe : 
https://github.com/shicai/DenseNet-Caffe 
code: unofficial-tensorflow : 
https://github.com/YixuanLi/densenet-tensorflow 
code: unofficial-pytorch : 
https://github.com/YixuanLi/densenet-tensorflow 
code: unofficial-pytorch : 
https://github.com/bamos/densenet.pytorch 
code: unofficial-keras : 
https://github.com/flyyufelix/DenseNet-Keras

15. FractalNet 

FractalNet: Ultra-Deep Neural Networks without Residuals 
Gustav Larsson, Michael Maire, Gregory Shakhnarovich 

pdf: https://arxiv.org/abs/1605.07648 
code: unofficial-caffe : 
https://github.com/gustavla/fractalnet 
code: unofficial-keras : 
https://github.com/snf/keras-fractalnet 
code: unofficial-tensorflow : 
https://github.com/tensorpro/FractalNet

16. ResNext 

Aggregated Residual Transformations for Deep Neural Networks 
Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He 

pdf: https://arxiv.org/abs/1611.05431 
code: official : 
https://github.com/facebookresearch/ResNeXt 
code: keras-applications : 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py 
code: unofficial-pytorch : 
https://github.com/prlz77/ResNeXt.pytorch 
code: unofficial-keras : 
https://github.com/titu1994/Keras-ResNeXt 
code: unofficial-tensorflow : 
https://github.com/taki0112/ResNeXt-Tensorflow 
code: unofficial-tensorflow : 
https://github.com/wenxinxu/ResNeXt-in-tensorflow

17. IGCV1 

Interleaved Group Convolutions for Deep Neural Networks 
Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang 

pdf: https://arxiv.org/abs/1707.02725 
code official : 
https://github.com/hellozting/InterleavedGroupConvolutions

18. Residual Attention Network 

Residual Attention Network for Image Classification 
Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang 

pdf: https://arxiv.org/abs/1704.06904 
code: official : 
https://github.com/fwang91/residual-attention-network 
code: unofficial-pytorch : 
https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch 
code: unofficial-gluon : 
https://github.com/PistonY/ResidualAttentionNetwork 
code: unofficial-keras : 
https://github.com/koichiro11/residual-attention-network

19. Xception 

Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet 

pdf: https://arxiv.org/abs/1610.02357 
code: unofficial-pytorch : 
https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py 
code: unofficial-tensorflow : 
https://github.com/kwotsin/TensorFlow-Xception 
code: unofficial-caffe : 
https://github.com/yihui-he/Xception-caffe 
code: unofficial-pytorch : 
https://github.com/tstandley/Xception-PyTorch 
code: keras-applications : 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py

20. MobileNet 
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 
Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 

pdf: https://arxiv.org/abs/1704.04861 
code: unofficial-tensorflow : 
https://github.com/Zehaos/MobileNet 
code: unofficial-caffe : 
https://github.com/shicai/MobileNet-Caffe 
code: unofficial-pytorch : 
https://github.com/marvis/pytorch-mobilenet 
code: keras-applications : 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

21. PolyNet 

PolyNet: A Pursuit of Structural Diversity in Very Deep Networks
Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin 

pdf: https://arxiv.org/abs/1611.05725 

code: official : 
https://github.com/open-mmlab/polynet

22. DPN 

Dual Path Networks 
Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng 

pdf: https://arxiv.org/abs/1707.01629 
code: official : 
https://github.com/cypw/DPNs 
code: unoffical-keras : 
https://github.com/titu1994/Keras-DualPathNetworks 
code: unofficial-pytorch : 
https://github.com/oyam/pytorch-DPNs 
code: unofficial-pytorch : 
https://github.com/rwightman/pytorch-dpn-pretrained

23. Block-QNN 

Practical Block-wise Neural Network Architecture Generation 
Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu 

pdf: https://arxiv.org/abs/1708.05552

24. CRU-Net 

Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks 
Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng 

pdf: https://arxiv.org/abs/1703.02180 
code official : 
https://github.com/cypw/CRU-Net 
code unofficial-mxnet : 
https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet

25. ShuffleNet 

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 
Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun 

pdf: https://arxiv.org/abs/1707.01083 
code: unofficial-tensorflow : 
https://github.com/MG2033/ShuffleNet 
code: unofficial-pytorch : 
https://github.com/jaxony/ShuffleNet 
code: unofficial-caffe : 
https://github.com/farmingyard/ShuffleNet 
code: unofficial-keras : 
https://github.com/scheckmedia/keras-shufflenet

26. CondenseNet 

CondenseNet: An Efficient DenseNet using Learned Group Convolutions
Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger 

pdf: https://arxiv.org/abs/1711.09224 
code: official : 
https://github.com/ShichenLiu/CondenseNet 
code: unofficial-tensorflow : 
https://github.com/markdtw/condensenet-tensorflow

27. NasNet 

Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le 

pdf: https://arxiv.org/abs/1707.07012 
code: unofficial-keras : 
https://github.com/titu1994/Keras-NASNet 
code: keras-applications : 
https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py 
code: unofficial-pytorch : 
https://github.com/wandering007/nasnet-pytorch 
code: unofficial-tensorflow : 
https://github.com/yeephycho/nasnet-tensorflow

28. MobileNetV2 

MobileNetV2: Inverted Residuals and Linear Bottlenecks 
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 

pdf: https://arxiv.org/abs/1801.04381 
code: unofficial-keras : 
https://github.com/xiaochus/MobileNetV2 
code: unofficial-pytorch : 
https://github.com/Randl/MobileNetV2-pytorch 
code: unofficial-tensorflow : 
https://github.com/neuleaf/MobileNetV2

29. IGCV2 

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks
Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi 

pdf: https://arxiv.org/abs/1804.06202

30. hier 

Hierarchical Representations for Efficient Architecture Search 
Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu 

pdf: https://arxiv.org/abs/1711.00436

31. PNasNet 

Progressive Neural Architecture Search 
Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy 

pdf: https://arxiv.org/abs/1712.00559 
code: tensorflow-slim : 
https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py 
code: unofficial-pytorch : 
https://github.com/chenxi116/PNASNet.pytorch 
code: unofficial-tensorflow : 
https://github.com/chenxi116/PNASNet.TF

32. AmoebaNet 

Regularized Evolution for Image Classifier Architecture Search 
Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le 

pdf: https://arxiv.org/abs/1802.01548 
code: tensorflow-tpu : 
https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net

33. SENet 

Squeeze-and-Excitation Networks 
Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu 

pdf: https://arxiv.org/abs/1709.01507 
code: official : 
https://github.com/hujie-frank/SENet 
code: unofficial-pytorch : 
https://github.com/moskomule/senet.pytorch 
code: unofficial-tensorflow : 
https://github.com/taki0112/SENet-Tensorflow 
code: unofficial-caffe : 
https://github.com/shicai/SENet-Caffe 
code: unofficial-mxnet : 
https://github.com/bruinxiong/SENet.mxnet

34. ShuffleNetV2 

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun 

pdf: https://arxiv.org/abs/1807.11164 
code: unofficial-pytorch : 
https://github.com/Randl/ShuffleNetV2-pytorch 
code: unofficial-keras : 
https://github.com/opconty/keras-shufflenetV2 
code: unofficial-pytorch : 
https://github.com/Bugdragon/ShuffleNet_v2_PyTorch 
code: unofficial-caff2: 
https://github.com/wolegechu/ShuffleNetV2.Caffe2

35. IGCV3 

IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks 
Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang 

pdf: https://arxiv.org/abs/1806.00178 
code: official : 
https://github.com/homles11/IGCV3 
code: unofficial-pytorch : 
https://github.com/xxradon/IGCV3-pytorch 
code: unofficial-tensorflow : 
https://github.com/ZHANG-SHI-CHANG/IGCV3

36. MNasNet 

MnasNet: Platform-Aware Neural Architecture Search for Mobile
Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le 

pdf: https://arxiv.org/abs/1807.11626 
code: unofficial-pytorch : 
https://github.com/AnjieZheng/MnasNet-PyTorch 
code: unofficial-caffe : 
https://github.com/LiJianfei06/MnasNet-caffe 
code: unofficial-MxNet : 
https://github.com/chinakook/Mnasnet.MXNet 
code: unofficial-keras : 
https://github.com/Shathe/MNasNet-Keras-Tensorflow

往期精彩回顾




  • 交流群

欢迎加入机器学习爱好者微信群一起和同行交流,目前有机器学习交流群、博士群、博士申报交流、CV、NLP等微信群,请扫描下面的微信号加群,备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~(也可以加入机器学习交流qq群772479961



Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/164523
 
201 次点击