社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

基于深度学习的多目标跟踪、轨迹预测

专知智能防务 • 1 年前 • 259 次点击  

多目标跟踪(MOT)是军事防御应用中态势分析的重要组成部分。随着无人机系统(UAS)的使用越来越多,对空中监视的MOT方法的需求量也越大。MOTUAS中的应用提出了特定的挑战,例如移动传感器、改变缩放级别、动态背景、光照变化、遮挡和小物体。

美国洛克希德·马丁的AI中心提出了一个强大的对象跟踪架构,旨在适应实时情况下的噪声。提出了一种称为深度扩展卡尔曼滤波器(DeepEKF)的运动学预测模型,其中使用sequence-to-sequence架构来预测潜在空间中的实体轨迹。DeepEKF利用一个学习过的图像嵌入以及一个训练有素的注意力机制来加权图像中区域的重要性,以预测未来状态。对于视觉评分,使用不同的相似性度量来计算基于实体外观的距离,包括使用Siamese网络预训练的卷积神经网络(CNN)编码器。评估实验结果表明此方法在MHT框架内结合了运动学和视觉模型的评分结构,提高了性能,尤其是在实体运动不可预测或数据呈现具有显着差距的帧的边缘情况下.

多目标跟踪框架

专知便捷查看

便捷下载,请关注专知人工智能公众号(点击上方蓝色专知关注)

  • 后台回复“mot” 就可以获取 【AI+军事】美国洛马AI中心paper速读:多目标跟踪、轨迹预测 专知下载链接


  • 欢迎微信扫一扫加专知助手,获取最新AI专业干货知识教程资料和与专家交流咨询!


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI(AI与军事、医药、公安等)主题干货知识资料!
点击“阅读原文”,了解使用专知,查看获取70000+AI主题知识资源

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/165151
 
259 次点击