社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

量化前沿速递:机器学习[20240327]

量化前沿速递 • 1 年前 • 286 次点击  
机器翻译,仅供参考!可使用微信自带翻译功能自行翻译

更多文献获取请关注公众号:量化前沿速递
获取文献链接/翻译/pdf请加入知识星球“量化前沿速递

文献汇总

[1] Chain structured neural architecture search for financial time series  forecasting
金融时间序列预测的链结构神经结构搜索
来源:ARXIV_20240325
[2] Teamwork and Spillover Effects in Performance Evaluations
绩效评估中的团队合作和溢出效应
来源:ARXIV_20240325
[3] Robust Utility Optimization via a GAN Approach
基于GAN方法的鲁棒效用优化
来源:ARXIV_20240325
[4] Deep Learning Based Measure of Name Concentration Risk
基于深度学习的姓名集中风险测度
来源:ARXIV_20240326

[1] Chain structured neural architecture search for financial time series  forecasting

标题:金融时间序列预测的链结构神经结构搜索
作者:Denis Levchenko, Efstratios Rappos, Shabnam Ataee, Biagio Nigro, Stephan Robert
来源:ARXIV_20240325
Abstract : We compare three popular neural architecture search strategies on chain structured search spaces  Bayesian optimization, the hyperband method, and reinforcement learning in the context of financial time series forecasting. ......(摘要翻译及全文见知识星球)
Keywords :

[2] Teamwork and Spillover Effects in Performance Evaluations

标题:绩效评估中的团队合作和溢出效应
作者:Enzo Brox, Michael Lechner
来源:ARXIV_20240325
Abstract : This article shows how coworker performance affects individual performance evaluation in a teamwork setting at the workplace. We use high quality data on football matches to measure an important component of individual performance, shooting performance, isolated from collaborative effects. Employing causal machine learning methods, we address the assortative matching of workers and estimate both average and heterogeneous effects. There is substantial......(摘要翻译及全文见知识星球)
Keywords :

[3] Robust Utility Optimization via a GAN Approach

标题:基于GAN方法的鲁棒效用优化
作者:Florian Krach, Josef Teichmann, Hanna Wutte
来源:ARXIV_20240325
Abstract : Robust utility optimization enables an investor to deal with market uncertainty in a structured way, with the goal of maximizing the worst case outcome. In this work, we propose a generative adversarial network (GAN) approach to (approximately) solve robust utility optimization problems in general and realistic settings. In particular, we model both the investor and the market by neural networks (NN)......(摘要翻译及全文见知识星球)
Keywords :

[4] Deep Learning Based Measure of Name Concentration Risk

标题:基于深度学习的姓名集中风险测度
作者:Eva Lütkebohmert, Julian Sester
来源:ARXIV_20240326
Abstract : We propose a new deep learning approach for the quantification of name concentration risk in loan portfolios. Our approach is tailored for small portfolios and allows for both an actuarial as well as a mark to market definition of loss. The training of our neural network relies on Monte Carlo simulations with importance sampling which we explicitly formulate for the CreditRisk......(摘要翻译及全文见知识星球)
Keywords :

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/168439
 
286 次点击