社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

OCR 2024 | 洪楠教授:深度学习在骨肿瘤的研究进展

梅斯医学 • 1 年前 • 325 次点击  

2024年8月24-25日,第十四届东方放射学会议(OCR)在上海隆重举行,本次大会邀请国内外相关领域的著名专家进行分享和交流,共享影像学研究成果,共话影像学发展前景。大会涵盖传统影像、精准医疗、大数据及云医疗、人工智能及介入治疗等多个交叉学科的最新进展和临床应用,力求达到传承经典、聚焦前沿、融合创新、引领发展的目标,为参会者开视野、领略前沿、拓展思路、穷实基础提供一个精彩纷呈的学习交流平台。

在本次大会上,来自北京大学人民医院的洪楠教授对“深度学习在骨肿瘤的研究进展”进行了详细的分享,本文梳理重点内容,以分享各位同道。

1.骨肿瘤概述

骨肿瘤是发生于骨骼或其附属组织的肿瘤,广义上包括骨肿瘤瘤样病变、骨良性肿瘤、骨恶性肿瘤。骨肿瘤具有多种组织学亚型,根据肿瘤起源于细胞或基质进行分类可分为骨性、软骨性、纤维性、肌源性、脂肪源性、血管源性以及未明确性质等。鉴于恶性骨肿瘤的罕见性,由于不同病变的好发年龄和部位存在一定重叠,且临床症状和体征隐匿多样,很少具有特异性,“同病异影,异病同影”的现象普遍存在,导致术前诊断具有一定的挑战性。

2.深度学习概述

深度学习是机器学习的一个子领域,其核心思想是模仿人脑的神经网络结构和学习方式,通过构建多层次的神经网络模型,实现对大规模复杂数据的表征和学习。深度学习自20世纪40年代至今已经历了三代神经网络的发展,自2012年发展进入爆发期。

常见的神经网络包括深度神经网络(DNN)、卷积神经网络(CNN)、递归神经网络(RNN)、深度信念网络(DBN)、生成式对抗网络(GAN)等。卷积神经网络(CNIN)的核心是卷积层和池化层,卷积层通过应用一系列的卷积核(卷积滤波器)对输入数据进行特征提取,池化层用于减小数据的空问维度,全连接层将卷积层和池化层的输出连接到输出层,并进行分类或回归等任务。

深度学习具有以下优点:

1)高度自动化:深度学习能够自动学习和提取特征,减少了手工特征工程的成本和时间;

2)对大规模数据的处理能力强:深度学习模型具有较强的泛化能力,可以处理大规模数据集,识别出更复杂的模式和规律;

3)对非线性关系的建模能力强:深度学习模型通过多层神经元的组合,可以对非线性关系进行建模,能够捕捉到更复杂的数据特征;

3.深度学习在骨肿瘤的应用

近年来,深度学习已应用于骨肌系统病变的检测与分割、疾病的诊断与分类、化疗反应评估、预测复发等方面:

1)诊断支持:通过训练深度学习模型,可以将医学影像数据(如X射线、CT扫描、MRI等)与疾病或病理信息相关联,从而帮助医生进行更准确的疾病诊断

2)疾病预测和进展:深度学习可以利用医学影像数据的时空信息,建立预测模型,用于预测疾病的发展趋势、预后以及治疗效果

3)医学影像重建:通过训练深度学习模型,可以从模糊或低质量的影像数据中重建出更清晰和高分辨率的图像

4)病灶检测和分割:深度学习可用于检测医学影像中的病变和异常,可以自动标记和定位病灶,并将其与正常组织进行区分

von Schacky CE等基于1045例患者的数据开发和验证了一种多任务深度学习模型,利用X线平片的数据,对原发性骨肿瘤进行分割和分类(良、恶性);该模型的分类性能超过了放射科住院医师的水平,与高年资骨放射科医师的水平相当,可以提高诊断的准确性,从而改善原发性骨肿瘤患者 的诊断工作流程。

von schacky等基于976例患者的X线平片开发和验证机器学习模型,以区分良性和恶性骨病变,结果显示基于影像组学特征和临床特征相结合的人工神经网络(ANN)的表现最佳,与高级放射科医生相比,该模型的准确性较低,而与初级住院医师相比,该模型的准确性更高。

Eweje等回顾性纳入(5个中心)1060例患者,判别骨病变的良恶性。首先,使用EfficientNet-B0分别基于术前T1WI和T2WI构建两个深度学习模型。之后,基于患者的性别、年龄和病变位置构建一个临床逻辑回归模型。最后,构建了最终的投票集成模型(Voting ensemble model),并将该模型的性能与放射科医生的分类性能进行了比较。结果表明,二者准确性相近,但投票集成模型有助于改变工作流程,并能减少不必要的活检。

Noguchi 等基于319位骨转移患者(共1499处骨转移)和463位无骨转移的人群建立一个基于CT数据的深度学习算法,自动检测骨转移病变。该算法由三个卷积神经网络组成:1)基于2D UNet的骨区域分割网络;2)基于3D UNet的骨转移区域分割网络;3)基于3D ResNet的骨转移分类网络。与9名放射科医生的标注结果进行比较表明,在该算法的帮助下,放射科医生在骨转移检测方面的整体表现得到了提高,同时读片时间明显减少。

Li等基于两个中心的1085张骨肿瘤X线片和345张正常骨X线片,开发基于You Only Look Once (YOLO)的医学深度学习模型,对X线片上的骨病变进行自动检测和分类(正常、良性、中间性或恶性),并与两名放射科医生的诊断性能进行比较。结果表明,YOLO深度学习模型可用于辅助放射科医师在全视野骨X线片中各个阶段的骨病变检测和分类。

Xiong等基于3个中心(846名患者/2111例硬化性骨病变/10662张图像)的CT图像建立2D(single-slice input)和2.5D(three-slice input)深度学习模型鉴别成骨性骨转移和骨岛。结果表明,2.5D深度学习模型性能最佳,可以提高成骨性骨转移的预测能力,有助于临床决策。

Wennmann等基于102个患者的106张全身MRI进行一项多中心回顾性研究,基于深度学习(nnU-Net)进行全身骨髓的自动分割,Dice系数为0.88/0.87/0.83(不同中心),进一步构建多发性骨髓瘤(MM)的影像组学表型,并揭示MM的异常MRI表现和影像组学特征之间的联系。最后根据影像组学表型建立影像组学预测模型,患者的预测身高、体重与实际身高、体重显著相关(P =0.002和P =0.003)。

Chen等纳入197例患者的胸部低剂量CT。首先,基于ResNet50训练自动分割模型分割胸椎体,自动分割的Dice系数为0.87±0.01。其次,基于SVM进行影像组学纹理分析,基于从椎体中提取的影像组学特征开发一个两级分类器(正常组vs异常组;如果异常,骨量减少组vs骨质疏松组)一级和二级分类器的预测准确率分别为0.92±0.04和0.94±0.05。该开发的方法可整合到当前的临床工作流程中,在肺癌LDCT筛查时同时评估是否存在骨质疏松。

Zhong等纳入144例经新辅助化疗(NAC)的骨肉瘤患者,首先建立一个基于nnUNet的深度学习自动分割网络进行ROI的勾画,深度学习分割模型的平均Dice系数分别为0.866和0.869(训练集/测试集)。其次,基于临床和MRI影像组学构建诺莫图预测骨肉瘤患者对NAC的治疗反应,诺莫图的AUC分别为0.872和0.793(训练集/测试集),可以为骨肉瘤患者术前预测NAC病理缓解提供参考依据。

Li等比较了深度信念网络(DBN)算法与其他6种机器学习(DT, GBM,LR,NBC,RF and XGBoost)算法的性能以预测骨肉瘤患者的肺转移。此外,将基于DBN的肺转移预测模型作为参数整合到Cox比例风险模型中,预测骨肉瘤患者的总生存期。

来自洪楠教授团队近期构建了深度学习模型,用于评估骨肉瘤新辅助化疗疗效。研究发现,深度学习影像组学(DLR)模型可以作为一种实用的预测工具,能够识别新辅助化疗反应较差的骨肉瘤患者,协助制定临床治疗决策。

同时,还比较了9种机器学习模型、1个基于卷积神经网络(CNN)模型和1个三维3D CNN模型的性能,并提出了一个两步nnU-Net模型,用于骨肉瘤和尤文肉瘤的自动分割和识别。

4.局限性与展望

首先,深度学习需要依赖大规模的数据集。然而,由于骨肿瘤的发病率和患病率相对较低,而目前开源数据库中未涵盖骨肿瘤的临床数据,这对建立深度学习模型造成了一定的影响。

1)基于深度学习的特征具有“黑盒子”的特点,无准确、完整的公式与定义,因此缺乏生物学可解释性

2)目前普遍缺乏高质量的训练数据:

● 现有的数据集标准多样、系统偏差较大,缺乏对疾病的统一认识

● 缺乏对数据和标注数据统一且清晰的标准化描述,导致机器学习与数据之间产生交互障碍、机器错误解数据的真实含义

3) 模型的泛化性差:

● 可能的原因有很多,如数据的样本量、样本的多样性不足

● 特征筛选方法欠佳,未能找到反映肿瘤异质性的稳定且通用的特征

4)研究现状存在以下不足:

● 原发性骨肿瘤相对比较少见、样本量小且种类繁多,深度学习算法的应用受限,目前针对每种特定肿瘤类型的研究相对较少

● 由于骨结构复杂、边界模糊和形状不规则以及影像伪影和噪声大,导致骨肿瘤相对于其他解剖区域(如肺和脑)在自动分割上更具挑战性,目前针对骨肿瘤自动分割的研究相对较少

● 使用的数据都是回顾性收集的,可能存在选择偏差

未来,基于深度学习能在提升骨肿瘤的识别的能力,需要进行多中心、大样本、前瞻性研究。采用全自动或半自动标注方式,可提高标注的一致性。多种算法的融合(传统组学/深度学习,特征融合/结果融合等)也是未来研究趋势。此外,可解释性方法的开发(SHAP图,Grad-CAM图等),多模态(联合MR、PET、CT)及多组学(联合临床、病理、基因、蛋白组学、代谢组学)数据的融合也是未来一大趋势。

撰文 | 梅斯医学
编辑 | 阿拉斯加宝

猪肉牛肉要少吃!Nature子刊:超20万人36年随访发现,红肉吃得多,糖尿病风险更高!罪魁祸首是它
重磅!华西刘进:写病历、拉钩不是干杂活,对规培生很重要!医生要有疲劳下工作的能力!50% 的规培生月收入超过 5000 元了?
禁食跌下神坛?竟有致癌风险?Nature:禁食后再进食,会增加干细胞增殖和促进肿瘤形成!
版权说明:梅斯医学(MedSci)是国内领先的医学科研与学术服务平台,致力于医疗质量的改进,为临床实践提供智慧、精准的决策支持,让医生与患者受益。欢迎个人转发至朋友圈,谢绝媒体或机构未经授权以任何形式转载至其他平台。
点击下方「阅读原文」 立刻下载梅斯医学APP

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/173590
 
325 次点击