深度学习领域的先驱者和2018年图灵奖得主、Meta首席科学家Yann LeCun(杨立昆)分享对人工智能未来的深刻见解
一。这位法国计算机科学家的学术之路充满传奇。从1987年在索邦大学提出开创性的反向传播算法,到1989年在贝尔实验室开发出轰动业界的笔迹识别系统,再到在AI"寒冬"期间坚守阵地、深耕卷积神经网络(CNN)技术,LeCun最终见证了2012年深度学习的爆发性革命,并于2018年与Geoffrey Hinton和Yoshua Bengio一起摘得图灵奖的至高荣誉。
二。对于当前备受追捧的大语言模型(LLM),这位Meta首席科学家却持谨慎态度。他直言不讳地表示,LLM并非下一代AI革命的关键,也无法帮助系统真正理解物理世界。在他看来,虽然各大公司正在投入大量资源研发LLM,但这项技术的主导地位可能仅能维持三到五年。未来,LLM或将成为更复杂系统中的一个组件,而非主流架构。对于年轻研究者,LeCun给出了富有远见的建议。他指出,分层规划(hierarchical planning)领域仍有诸多待解难题,这将是极具潜力的博士研究方向。同时,基于能量的模型(energy-based models)在理论基础方面也存在大量亟待突破的问题。
5个主要建议:
1、放弃生成模型,转向使用联合嵌入预测架构(JEPA)。
2、放弃概率模型,转向基于能量的模型。
3、放弃对比学习方法,采用正则化方法。
4、放弃强化学习,我已经呼吁了十多年,认为强化学习不适合达到人类水平的AI。
5、不要在LLM(大型语言模型)上浪费时间,尤其是如果你是一名博士生,正在攻读人工智能的学位。
三。展望接下来几年,LeCun描绘了一幅令人期待的蓝图:开发出具备人类水平智能的虚拟助手。这种助手不仅能够协助我们处理日常事务,更将成为我们的导师和教授,帮助放大人类的智慧潜能。正如15世纪的印刷机为人类带来了知识传播的革命,这种新一代AI助手也将掀起一场认知革命,开启人类智慧增强的新纪元。
哥伦比亚大学杨立昆演讲:大模型只是AI发展阶段性成果,但下一步AI革命制胜关键不会依赖于此(附视频)
一。这位法国计算机科学家的学术之路充满传奇。从1987年在索邦大学提出开创性的反向传播算法,到1989年在贝尔实验室开发出轰动业界的笔迹识别系统,再到在AI"寒冬"期间坚守阵地、深耕卷积神经网络(CNN)技术,LeCun最终见证了2012年深度学习的爆发性革命,并于2018年与Geoffrey Hinton和Yoshua Bengio一起摘得图灵奖的至高荣誉。
二。对于当前备受追捧的大语言模型(LLM),这位Meta首席科学家却持谨慎态度。他直言不讳地表示,LLM并非下一代AI革命的关键,也无法帮助系统真正理解物理世界。在他看来,虽然各大公司正在投入大量资源研发LLM,但这项技术的主导地位可能仅能维持三到五年。未来,LLM或将成为更复杂系统中的一个组件,而非主流架构。对于年轻研究者,LeCun给出了富有远见的建议。他指出,分层规划(hierarchical planning)领域仍有诸多待解难题,这将是极具潜力的博士研究方向。同时,基于能量的模型(energy-based models)在理论基础方面也存在大量亟待突破的问题。
5个主要建议:
1、放弃生成模型,转向使用联合嵌入预测架构(JEPA)。
2、放弃概率模型,转向基于能量的模型。
3、放弃对比学习方法,采用正则化方法。
4、放弃强化学习,我已经呼吁了十多年,认为强化学习不适合达到人类水平的AI。
5、不要在LLM(大型语言模型)上浪费时间,尤其是如果你是一名博士生,正在攻读人工智能的学位。
三。展望接下来几年,LeCun描绘了一幅令人期待的蓝图:开发出具备人类水平智能的虚拟助手。这种助手不仅能够协助我们处理日常事务,更将成为我们的导师和教授,帮助放大人类的智慧潜能。正如15世纪的印刷机为人类带来了知识传播的革命,这种新一代AI助手也将掀起一场认知革命,开启人类智慧增强的新纪元。
哥伦比亚大学杨立昆演讲:大模型只是AI发展阶段性成果,但下一步AI革命制胜关键不会依赖于此(附视频)