社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  aigc

纯手写论文竟被标为“AI生成”,AIGC检测到底靠谱吗?

中科院物理所 • 3 周前 • 62 次点击  


又到了一年毕业季

屏幕前的你是否还在为写毕业论文发愁?


然而,把论文写出来只是第一步,论文还要通过查重检测才行。于是各种降重方法都被安排上了,翻译转换、同义词替换、调换语序......


好不容易把论文的查重率降下来了,以为这就结束了?不!部分学校为了防止AI代写毕业论文,在原有查重检测的基础上,还增加了AIGC检测

1

AIGC是什么

你可能没听过AIGC,但你一定用过它AIGC全称为“Artificial Intelligence Generated Content”,翻译过来就是“人工智能生成内容”,即利用人工智能技术来生成各种形式的内容,包括文字、音乐、图像、视频等等。所以我们平时用ChatGPT、Deepseek、豆包等等软件来生成文本都是使用的AIGC技术。


AIGC被认为是继“专业生成内容(PGC)”和“用户生成内容(UGC)”之后,利用人工智能技术自动生成内容的新型生产方式,它的出现标志着人工智能进入全新发展时期。AIGC主要由三个关键组件组成:数据、硬件和算法。高质量的音频、文本和图像等数据是训练算法的基石,数据集的规模大小将直接影响训练模型的准确性,通常样本量越大模型越精准。这就需要硬件系统需能够处理TB级海量数据以及包含数百万参数的复杂算法,面对如此庞大的数据量,高性能的芯片与云计算平台深度整合,为解决这一问题提供了算力保障。

(硬件、算法和数据之间的关系)


算法性能则直接决定内容的生成质量。如今AIGC之所以能被人们广泛应用,离不开机器学习、深度学习以及生成式对抗网络(GAN)等算法的发展。下面介绍一下AIGC的主要算法:


基于生成式对抗网络(GAN)


正是有了GAN技术,AI才能够生成逼真的图像、音频和文本。GNA由两个“竞争”的神经网络——生成器和判别器组成。生成器负责生成内容,它接受一组随机噪声向量并输出与真实数据分布相似的生成数据。判别器负责评估生成数据的真实性,同时接受真实数据和生成数据并尝试区分它们。生成器和判别器之间的训练就是一个博弈过程,生成器不断改进,以生成能够欺骗判别器的数据;而判别器不断优化,以提高其辨别能力,在它们不断的较量中生成器的内容会越来越逼真。

基于自编码器(Autoencoder)


自编码器是一种利用反向传播算法使得输出值等于输入值的神经网络,包括编码器和解码器两个部分。编码器能将输入的数据压缩成低维度的潜在表示,而解码器能将潜在表示重构回原始数据,从而实现数据的生成与重建。AE的用途主要有两个方面,其一是数据去噪,其二是为了可视化对数据降维。

(Autoencoder模型)

基于变换器(Transformer)


变换器模型广泛应用于自然语言处理(NLP)任务中,如文本生成、机器翻译等。近年来,变换器架构也被用于图像生成和其他多模态任务中。它的核心在于自注意力机制,能够捕捉输入序列中不同位置特征之间的依赖关系,而不仅仅是局部上下文。这使得变换器在处理长序列数据时能够表现出色。Transformer通常由编码器和解码器两个部分组成,编码器将输入序列转换为隐层表示,解码器则根据隐层信息生成输出序列。


2

AIGC检测是怎么做的

既然AIGC功能如此强大,那么用它写论文岂不是分分钟就搞定。正是为了避免这种学术不端行为的发生,许多平台开始推出AI生成内容检测功能,部分高校也把AIGC检测结果作为论文能否通过的要求之一。面对AI生成的文本,我们都看不出来和自己写的有啥区别,电脑又是怎么判断的呢?



首先我们要清楚地认识到,目前任何一种AI检测手段都无法保证100%认出哪个是机器写的,哪个是人类写的。因此,通常会给出一个AIGC值,表示一段文本有多大概率是AI写的。



目前的AIGC检测算法主要可以分为三类:


基于训练的分类器

(在人机文本二元数据上微调预训练模型)


这种方法基于深度学习的二分类模型,是目前AIGC检测的主流方法。收集大量AI生成的文本与人类写作的文本,把它们喂给同一个模型,这个新的模型就可以用这两种数据进行训练,经过不断地优化、迭代,最后得到一个分类器。通过向分类器输入一段文本,它就能输出这段文本是AI生成的概率。由于检测器不知道你是用哪种AI模型生成的,所以这属于未知源的黑盒检测,模型性能仅受限于训练数据的覆盖范围。如果训练数据涵盖多模型、多领域,检测的准确性和泛化性就更强,反之则可能因数据偏差导致漏检或误判。


零样本检测器

(利用大语言模型固有性质进行自检测)


顾名思义,零样本检测不需要大量数据来训练判别器,而是利用AI生成文本与人类撰写文本之间的固有区别,使得检测器无需训练就能进行分类。它的优势在于无需额外的数据收集和模型调整,这大大提高了模型对新数据分布的适应性。AI生成的文本与人类写作在语言风格、句式复杂程度、重复率等方面存在统计学差异,AIGC检测正是利用这种差异特征建模。AI生成的文本常呈现句式工整但缺乏灵活性、局部重复率高、信息熵低的特点,如反复使用“综上所述”、“基于以上分析”等模板化表达。


水印技术

(在生成文本中嵌入可追溯的标识信息)


我们都听过图片能加水印,没想到文字也能加水印。这里的水印不是人能够阅读出来的,它是一种统计学规律。举一个简单的例子,某个词语在文中出现的频率分布就可以当作文字水印。然而实际的应用中,水印算法的设计更为复杂。其中一个关键的挑战就是在不扭曲原始文本的含义或可读性的前提下嵌入水印。传统的方法,如同义词替换、语法树操作、段落重组等方式很难在修改文本的同时做到较好的语义保持,而大语言模型(LLMs)的出现改变了这一现状。它的核心优势在于通过深度学习自动实现语义保持与水印嵌入的平衡,根据植入水印对象的不同可以分为两大类:向现有文本中植入水印(Watermarking for Existing Text)和向大模型中植入水印(Watermarking for LLMs)。目前文本水印技术广泛应用在版权保护、维护学术诚信和虚假新闻检测等场景。



3

AIGC检测靠谱吗

随着AI的发展,各行各业的工作者开始使用AI辅助工作,其中学生利用AI工具进行论文写作成为了高校面临的现实课题,为此不少高校推出了针对AIGC的毕业论文考核标准。目前,很多我们耳熟能详的论文检测机构,比如知网、万方、维普、Turnitin等等都推出了AIGC检测。


AIGC检测真的靠谱码?有同学表示,自己纯手写的论文,AI重复率竟高达60%,为了满足毕业要求,不得不把强逻辑语句改成不通顺的句子。甚至有人把 朱自清的名篇《荷塘月色》与刘慈欣的《流浪地球》片段进行AIGC检测,结果显示,这两篇经典作品总体AI生成疑似率分别达到了62.88%和52.88%。这样的检测结果,也让学生们普遍多了“论文被AI”误判的担忧。在各大社交媒体平台上,“论文AI率高到离谱”成热门话题。


(《流浪地球》的AIGC检测高达52.88%)


前面提到过,目前任何AIGC检测都无法100%认出哪个是机器写的,哪个是人类写的,如果你写的论文包含大量规范表述,或者个人写作风格接近AI模式,就可能会被误报。相反,如果AI生成的文本经过巧妙的润色,也可能导致漏报。这里给大家介绍几种降AI率的小技巧,在使用它之前,请各位一定要遵守《学位法》,确保论文中数据、图表、文字的真实性


翻译大法

简单来讲就是将所写的文字翻译成另外一门语言,然后再翻译回来,如果效果不佳,还可以增加中间翻译的次数。经过几次翻译转换,文本的AIGC检测率可以大大降低。


更改句型结构

在AI给出的内容中,句型构成会具备一些比较相似的特点。仔细观察你会发现,AI喜欢用“无论、随着、此外、综上、同时”等类似的词汇,回答问题时喜欢用序号+标题+冒号+回答的形式,而且每个短句、段落的长度字数差不多。所以想要降AI就要避免使用AI大模型常用的词汇和句式,合并一些没有必要分开的短句和段落。或者多使用倒装句、问句或口语化表达,这都能很好地降AI。


(AI的回答有喜欢的句式)


丰富文本内容

AI写的论文总是让人看上去很有道理,但实际上没什么实质内容,也没有体的例子。所以想要降低AI,就要加入一些干货和实例,这样文章才不会看上去像AI写的。


用AI降AI

AI比人更懂AI检测背后的原理,用魔法打败魔法。至于AI降AI这事靠谱吗,小编我没试过,感兴趣的同学可以试试。



4

讲在最后

关于AI生成内容检测技术在毕业论文审查中的应用,目前仍存在较大争议。这项技术的初衷是为了维护学术诚信,但实际应用效果却难以令人满意。教育的本质目标在于培养学生的创新思维和问题解决能力,而非过度关注工具的使用方式。在人工智能快速发展的时代背景下,我们不仅需要建立防范技术滥用的机制,更应当从根本上重构教育评价体系,建立以能力为导向、能真实反映学生学术素养的多元化评估标准。

5

参考资料

  1. Yang, Xianjun, et al. "A survey on detection of llms-generated content." arXiv preprint arXiv: 2310.15654 (2023).

  2. aigc查重原理是什么

  3. AI-Generated Content (AIGC): A Survey 

  4. 大模型时代下的文本水印综述_文本溯源大模型困惑度

  5. 朱自清、刘慈欣名篇被判“超标”!学生称“降AI”掏空钱包,论文检测引争议

  6. AI写论文会被检测了!如何降低论文“AI味”?检测原理是什么?


编辑:Sid


近期热门文章Top10

↓ 点击标题即可查看 ↓

1. 为什么钟表都是顺时针转动的?逆时针转动会发生什么?| No.454

2.g与π²极为接近,巧合还是必然?

3.人类或将需要更少的睡眠,未来只需睡4.1小时

4.生命,居然也可以悬在边界上,不活不死……

5.灭绝一万多年的恐狼被复活?为什么人们那么害怕
6.波士顿大龙虾以前是给犯人和穷人吃的?!为啥啊?
7.如果你经常碰购物小票,真心劝你戴上手套!
8. 金价疯涨,我们有可能通过人造黄金一夜暴富吗?
9.睡在自己呕吐物里的鸟,被人用来榨油食用和点灯?
10.天塌了!!!盐水竟然不是上下一般咸?!
点此查看以往全部热门文章

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/182428
 
62 次点击