社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

彻底搞懂深度学习-自注意力机制(动图讲解)

架构师带你玩转AI • 2 天前 • 11 次点击  

一、自注意力机制

自注意力机制(Self- Attention)是什么?自注意力机制能够动态地捕捉序列中不同位置元素之间的依赖关系 ,不断更新词语关联度。

它之所以被称为“自注意力”,是因为它的查询和键来自同一组元素,即查询和键都是同一序列(如一句话中的词元或同一张图像中的不同patch)的特征,彼此之间进行注意力计算。

自注意力机制是Transformer模型的核心组件,它允许模型在处理序列数据时,通过计算序列中不同位置元素之间的相关性得分,动态地调整对每个元素的关注程度,从而捕捉到序列内部的复杂依赖关系。

二、注意力分数

如何实现注意力机制?在自注意力机制中,通过缩放点积计算注意力得分,并利用这些得分对值向量进行加权求和,从而实现了自注意力机制,它能够捕捉序列内部元素之间的依赖关系。

注意力分数用来量化注意力机制中某一部分信息被关注的程度,反映了信息在注意力机制中的重要性。在注意力机制中,模型会根据注意力分数来决定对不同输入信息的关注程度。


三、QKV矩阵运算

Q、K、V计算过程是什么?对于输入序列的每个单词,通过计算其Query与所有单词Key的点积得到注意力分数,经Softmax归一化后得到注意力权重,再用这些权重对Value向量进行加权求和,以得到包含丰富上下文信息的新单词表示。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/183408
 
11 次点击