社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

机器学习学术速递[7.15]

arXiv每日学术速递 • 3 天前 • 41 次点击  

点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.LG 方向,今日共计284篇


大模型相关(25篇)

【1】Fusing LLM Capabilities with Routing Data
标题:将LLM功能与路由数据融合
链接:https://arxiv.org/abs/2507.10540

作者: Haozhen Zhang, Zijie Lei, Pengrui Han, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jiaxuan You


【2】Response Wide Shut? Surprising Observations in Basic Vision Language Model Capabilities
标题:响应大范围关闭?基本视觉语言模型功能的惊人观察
链接:https://arxiv.org/abs/2507.10442

作者:andhok, Wan-Cyuan Fan, Vered Shwartz, Vineeth N Balasubramanian, Leonid Sigal
备注:Accepted at ACL 2025 (Main Conference)


【3】Leveraging RAG-LLMs for Urban Mobility Simulation and Analysis
标题:利用RAG-LLM进行城市移动模拟和分析
链接:https://arxiv.org/abs/2507.10382

作者: Conor McCarthy, Kevin O'Shea, Mingming Liu


【4】Conditional Chemical Language Models are Versatile Tools in Drug Discovery
标题:条件化学语言模型是药物发现中的通用工具
链接:https://arxiv.org/abs/2507.10273

作者:mmanuel Noutahi
备注:12 pages, extra 13 pages of appendix


【5】Pimba: A Processing-in-Memory Acceleration for Post-Transformer Large Language Model Serving
标题:Pimba:一种用于Post-Transformer大型语言模型服务的内存处理加速
链接:https://arxiv.org/abs/2507.10178

作者:m, Yubin Lee, Yoonsung Kim, Jinwoo Hwang, Seongryong Oh, Jiyong Jung, Aziz Huseynov, Woong Gyu Park, Chang Hyun Park, Divya Mahajan, Jongse Park


【6】ElasticMM: Efficient Multimodal LLMs Serving with Elastic Multimodal Parallelism
标题:ElasticMM:高效的多模态LLM,支持弹性多模态并行性
链接:https://arxiv.org/abs/2507.10069

作者:u, Shenggan Cheng, Guangming Tan, Yang You, Dingwen Tao


【7】Towards Applying Large Language Models to Complement Single-Cell Foundation Models
标题:应用大型语言模型来补充单细胞基础模型
链接:https://arxiv.org/abs/2507.10039

作者:layew, Bo Wang, Gary Bader


【8】Memorization Sinks: Isolating Memorization during LLM Training
标题:再同步下沉:在LLM训练期间隔离再同步
链接:https://arxiv.org/abs/2507.09937

作者: Ghosal, Pratyush Maini, Aditi Raghunathan
备注:Accepted at the 2025 International Conference of Machine Learning


【9】Mechanistic Interpretability of LoRA-Adapted Language Models for Nuclear Reactor Safety Applications
标题:核反应堆安全应用的LoRA自适应语言模型的机制解释性
链接:https://arxiv.org/abs/2507.09931

作者:Lee
备注:Submitted to Nuclear Technology. 22 pages, 2 tables, 4 figures


【10】Through the River: Understanding the Benefit of Schedule-Free Methods for Language Model Training
标题:过河:了解语言模型训练的无日程方法的好处
链接:https://arxiv.org/abs/2507.09846

作者:ng, Beomhan Baek, Kwangjun Ahn, Chulhee Yun
备注:Comments would be appreciated!


【11】Rethinking Prompt Optimization: Reinforcement, Diversification, and Migration in Blackbox LLMs
标题:重新思考即时优化:Blackbox LLM中的强化、多元化和迁移
链接:https://arxiv.org/abs/2507.09839

作者:eza Davari, Utkarsh Garg, Weixin Cai, Eugene Belilovsky


【12】Your Pretrained Model Tells the Difficulty Itself: A Self-Adaptive Curriculum Learning Paradigm for Natural Language Understanding
标题:您的预训练模型本身就说明了困难:自然语言理解的自适应课程学习范式
链接:https://arxiv.org/abs/2507.09758

作者:Yihong Liu, Hinrich Schütze
备注:18 pages, 23 figures. To appear in ACL 2025 Student Research Workshop (SRW)


【13】Large Language Models Encode Semantics in Low-Dimensional Linear Subspaces
标题:大型语言模型在低维线性子空间中编码语义
链接:https://arxiv.org/abs/2507.09709

作者:aglam, Paul Kassianik, Blaine Nelson, Sajana Weerawardhena, Yaron Singer, Amin Karbasi


【14】Calibrated and Robust Foundation Models for Vision-Language and Medical Image Tasks Under Distribution Shift
标题:分布转移下视觉语言和医学图像任务的校准且稳健的基础模型
链接:https://arxiv.org/abs/2507.09222

作者:an, Tahir Syed


【15】Detecting and Pruning Prominent but Detrimental Neurons in Large Language Models
标题:在大型语言模型中检测和修剪突出但有害的神经元
链接:https://arxiv.org/abs/2507.09185

作者:, Shahar Katz, Lior Wolf, Ivan Titov


【16】Tactile-VLA: Unlocking Vision-Language-Action Model's Physical Knowledge for Tactile Generalization
标题:触觉-VLA:解锁视觉-语言-动作模型的物理知识以实现触觉概括
链接:https://arxiv.org/abs/2507.09160

作者:ang, Shuo Wang, Fanqi Lin, Yihang Hu, Chuan Wen, Yang Gao


【17】HedraRAG: Coordinating LLM Generation and Database Retrieval in Heterogeneous RAG Serving
标题:HedraRAG:协调异类RAG服务中的LLM生成和数据库检索
链接:https://arxiv.org/abs/2507.09138

作者: Hu, Vibha Murthy, Zaifeng Pan, Wanlu Li, Xiaoyi Fang, Yufei Ding, Yuke Wang
备注:Accepted by SOSP 2025


【18】Lizard: An Efficient Linearization Framework for Large Language Models
标题:LSYS:大型语言模型的高效线性化框架
链接:https://arxiv.org/abs/2507.09025

作者: Nguyen, Ruiyi Zhang, Hanieh Deilamsalehy, Puneet Mathur, Viet Dac Lai, Haoliang Wang, Jayakumar Subramanian, Ryan A. Rossi, Trung Bui, Nikos Vlassis, Franck Dernoncourt, Thien Huu Nguyen
备注:15 pages


【19】On Evaluating Performance of LLM Inference Serving Systems
标题:LLM推理服务系统性能评价研究
链接:https://arxiv.org/abs/2507.09019

作者:wal, Nitin Kedia, Anmol Agarwal, Jayashree Mohan, Nipun Kwatra, Souvik Kundu, Ramachandran Ramjee, Alexey Tumanov


【20】PRISM: Reducing Spurious Implicit Biases in Vision-Language Models with LLM-Guided Embedding Projection
标题:PRism:利用LLM引导的嵌入投影减少视觉语言模型中的虚假内隐偏差
链接:https://arxiv.org/abs/2507.08979

作者:Molahasani, Azadeh Motamedi, Michael Greenspan, Il-Min Kim, Ali Etemad
备注:Accepted to ICCV 2025


【21】How to Train a Leader: Hierarchical Reasoning in Multi-Agent LLMs
标题:如何训练领导者:多代理LL M中的分层推理
链接:https://arxiv.org/abs/2507.08960

作者:tornell, Jean-Francois Ton, Muhammad Faaiz Taufiq, Hang Li


【22】ODIA: Oriented Distillation for Inline Acceleration of LLM-based Function Calling
标题:ODIA:基于LLM的函数调用的内联加速的定向蒸馏
链接:https://arxiv.org/abs/2507.08877

作者:hang, Jingsheng Yang, Hao Li, Yuhao He, Franck Gong


【23】Contrastive Language-Image Pre-Training Model based Semantic Communication Performance Optimization
标题:基于对比图-图像预训练模型的语义通信性能优化
链接:https://arxiv.org/abs/2507.08873

作者:ang, Dongyu Wei, Hanzhi Yu, Zhaohui Yang, Yuchen Liu, Mingzhe Chen
备注:Submitted to IEEE GLOBECOM 2025


【24】wd1: Weighted Policy Optimization for Reasoning in Diffusion Language Models
标题:wd 1:扩散语言模型中推理的加权策略优化
链接:https://arxiv.org/abs/2507.08838

作者:Tang, Rares Dolga, Sangwoong Yoon, Ilija Bogunovic
备注:Preprint


【25】VIP: Visual Information Protection through Adversarial Attacks on Vision-Language Models
标题:VIP:通过对视觉语言模型的对抗性攻击保护视觉信息
链接:https://arxiv.org/abs/2507.08982

作者: Z. Brachemi Meftah, Wassim Hamidouche, Sid Ahmed Fezza, Olivier Déforges


Graph相关(图学习|图神经网络|图优化等)(16篇)

【1】Graph World Model
标题:图表世界模型
链接:https://arxiv.org/abs/2507.10539

作者: Yexin Wu, Guanyu Lin, Jiaxuan You


【2】A Graph Sufficiency Perspective for Neural Networks
标题:神经网络的图充分性观点
链接:https://arxiv.org/abs/2507.10215

作者:Shen, Yuexiao Dong
备注:23 pages


【3】T-GRAB: A Synthetic Diagnostic Benchmark for Learning on Temporal Graphs
标题:T-GRAB:一个用于时态图学习的综合诊断基准
链接:https://arxiv.org/abs/2507.10183

作者:izaji, Benedict Aaron Tjandra, Mehrab Hamidi, Shenyang Huang, Guillaume Rabusseau
备注:Accepted to MLoG-GenAI Workshop @ KDD 2025 (Oral)


【4】Large-Scale Graph Building in Dynamic Environments: Low Latency and High Quality
标题:动态环境中的大规模图形构建:低延迟和高质量
链接:https://arxiv.org/abs/2507.10139

作者:guel Gonçalves de Almeida, CJ Carey, Hendrik Fichtenberger, Jonathan Halcrow, Silvio Lattanzi, André Linhares, Tao Meng, Ashkan Norouzi-Fard, Nikos Parotsidis, Bryan Perozzi, David Simcha


【5】Wavelet-Enhanced Neural ODE and Graph Attention for Interpretable Energy Forecasting
标题:基于小波增强的神经网络常微分方程和图形注意力的可解释能源预测
链接:https://arxiv.org/abs/2507.10132

作者:i Joy


【6】Forecasting Coccidioidomycosis (Valley Fever) in Arizona: A Graph Neural Network Approach
标题:预测亚利桑那州的球孢子菌病(山谷热):图形神经网络方法
链接:https://arxiv.org/abs/2507.10014

作者:i, Arash Sarabi, Hao Yan, Beckett Sterner, Petar Jevtić


【7】Hierarchical Job Classification with Similarity Graph Integration
标题:具有相似度图集成的分层职位分类
链接:https://arxiv.org/abs/2507.09949

作者:l Kabir, Kareem Abdelfatah, Mohammed Korayem, Mohammad Al Hasan


【8】Soft Graph Clustering for single-cell RNA Sequencing Data
标题:单细胞RNA测序数据的软图聚集
链接:https://arxiv.org/abs/2507.09890

作者:Pengfei Wang, Zhiyuan Ning, Meng Xiao, Min Wu, Yuanchun Zhou


【9】Federated Learning with Graph-Based Aggregation for Traffic Forecasting
标题:基于图的聚合的联邦学习用于交通预测
链接:https://arxiv.org/abs/2507.09805

作者:ik, Glaucio Haroldo Silva de Carvalho, Renata Dividino
备注:Accepted at FedKDD 2025: International Joint Workshop on Federated Learning for Data Mining and Graph Analytics. 6 pages, 1 figure


【10】Toward accurate RUL and SOH estimation using reinforced graph-based PINNs enhanced with dynamic weights
标题:使用动态权重增强的基于图的增强PINN实现准确的RUL和SOH估计
链接:https://arxiv.org/abs/2507.09766

作者:za Akbari Pour, Ali Ghasemzadeh, MohamadAli Bijarchi, Mohammad Behshad Shafii


【11】Geometric Generative Modeling with Noise-Conditioned Graph Networks
标题:具有噪音条件图网络的几何生成建模
链接:https://arxiv.org/abs/2507.09391

作者:-Huang, Mitchell Black, Xiaojie Qiu
备注:ICML 2025


【12】Towards Interpretable Drug-Drug Interaction Prediction: A Graph-Based Approach with Molecular and Network-Level Explanations
标题:迈向可解释的药物相互作用预测:基于图形的方法,具有分子和网络级解释
链接:https://arxiv.org/abs/2507.09173

作者:hen, Ming Zhang, Cunquan Qu


【13】Heterogeneous Graph Prompt Learning via Adaptive Weight Pruning
标题:通过自适应权重修剪的异类图提示学习
链接:https://arxiv.org/abs/2507.09132

作者:Wei, Shun-Yao Liu, Sheng-Da Zhuo, Chang-Dong Wang, Shu-Qiang Huang, Mohsen Guizani


【14】Graph Neural Network Enhanced Sequential Recommendation Method for Cross-Platform Ad Campaign
标题:跨平台广告活动的图神经网络增强序列推荐方法
链接:https://arxiv.org/abs/2507.08959

作者: Xinyu Wang, Yifan Lin


【15】History Matching under Uncertainty of Geological Scenarios with Implicit Geological Realism Control with Generative Deep Learning and Graph Convolutions
标题:地质场景不确定性下的历史匹配,隐式地质现实主义控制,生成式深度学习和图形卷积
链接:https://arxiv.org/abs/2507.10201

作者:haev, Vasily Demyanov, Daniel Arnold
备注:Part of the completed PhD thesis this https URL


【16】Signed Graph Learning: Algorithms and Theory
标题:符号图学习:算法与理论
链接:https://arxiv.org/abs/2507.09717

作者:Karaaslanli, Bisakh Banerjee, Tapabrata Maiti, Selin Aviyente


Transformer(12篇)

【1】Extracting Important Tokens in E-Commerce Queries with a Tag Interaction-Aware Transformer Model
标题:使用标签交互感知Transformer模型提取电子商务收件箱中的重要令牌
链接:https://arxiv.org/abs/2507.10385

作者:ul Kabir, Mohammad Al Hasan, Aritra Mandal, Liyang Hao, Ishita Khan, Daniel Tunkelang, Zhe Wu


【2】TAT: Temporal-Aligned Transformer for Multi-Horizon Peak Demand Forecasting
标题:STAT:用于多层面峰值需求预测的时间对齐Transformer
链接:https://arxiv.org/abs/2507.10349

作者:hao, Sitan Yang, Kin G. Olivares, Boris N. Oreshkin, Stan Vitebsky, Michael W. Mahoney, B. Aditya Prakash, Dmitry Efimov
备注:9 pages, 4 figures, 7 tables, published at KDD 2025 workshop on AI for Supply Chain: Today and Future


【3】Should We Ever Prefer Decision Transformer for Offline Reinforcement Learning?
标题:我们应该更喜欢使用决策Transformer来进行离线强化学习吗?
链接:https://arxiv.org/abs/2507.10174

作者:i, Zixuan Dong, Keith Ross
备注:Accepted by RLBrew: Ingredients for Developing Generalist Agents workshop (RLC 2025)


【4】Extracting Cause-Effect Pairs from a Sentence with a Dependency-Aware Transformer Model
标题:使用依赖性感知Transformer模型从句子中提取因果对
链接:https://arxiv.org/abs/2507.09925

作者:l Kabir, Abrar Jahin, Mohammad Al Hasan


【5】MLoRQ: Bridging Low-Rank and Quantization for Transformer Compression
标题:MLoRQ:桥接低秩和量化的Transformer压缩
链接:https://arxiv.org/abs/2507.09616

作者:on, Ariel Lapid, Elad Cohen, Yarden Yagil, Arnon Netzer, Hai Victor Habi


【6】Transformers Don't In-Context Learn Least Squares Regression
标题:Transformer不会在上下文中学习最小二乘回归
链接:https://arxiv.org/abs/2507.09440

作者:ll, Benjamin Eyre, Elliot Creager
备注:21 pages, 16 figures, ICML 2025 Workshop on Reliable and Responsible Foundation Models


【7】Adversarial Activation Patching: A Framework for Detecting and Mitigating Emergent Deception in Safety-Aligned Transformers
标题:对抗激活修补:检测和减轻安全调整Transformer中紧急欺骗的框架
链接:https://arxiv.org/abs/2507.09406

作者:Kumar Ravindran


【8】TPP-SD: Accelerating Transformer Point Process Sampling with Speculative Decoding
标题:TPP-SD:用推测解码加速Transformer点过程采样
链接:https://arxiv.org/abs/2507.09252

作者:ng, Yiyang Fu, Fengyuan Ran, Feng Zhou


【9】POIFormer: A Transformer-Based Framework for Accurate and Scalable Point-of-Interest Attribution
标题:POIFormer:一个基于转换器的框架,用于准确且可扩展的兴趣点归因
链接:https://arxiv.org/abs/2507.09137

作者:Ani Saxena, Shang-Ling Hsu, Mehul Shetty, Omar Alkhadra, Cyrus Shahabi, Abigail L. Horn


【10】Domain-Adaptive Diagnosis of Lewy Body Disease with Transferability Aware Transformer
标题:利用可转移性感知Transformer对路易体病进行区域适应性诊断
链接:https://arxiv.org/abs/2507.08839

作者:u, Jing Zhang, Tong Chen, Yan Zhuang, Minheng Chen, Chao Cao, Yanjun Lyu, Lu Zhang, Li Su, Tianming Liu, Dajiang Zhu
备注:MICCAI 2025


【11】Representation learning with a transformer by contrastive learning for money laundering detection
标题:基于对比学习的Transformer表示学习算法在洗钱检测中的应用
链接:https://arxiv.org/abs/2507.08835

作者:éneau (SAMM), Alain Celisse (LPP, MODAL), Pascal Delange


【12】DepViT-CAD: Deployable Vision Transformer-Based Cancer Diagnosis in Histopathology
标题:DepViT-CAD:可部署的基于视觉变换器的组织学癌症诊断
链接:https://arxiv.org/abs/2507.10250

作者:akarami, Lorenzo Nicole, Rocco Cappellesso, Angelo Paolo Dei Tos, Stefano Ghidoni
备注:25 pages, 15 figures


GAN|对抗|攻击|生成相关(11篇)

【1】Bridging Robustness and Generalization Against Word Substitution Attacks in NLP via the Growth Bound Matrix Approach
标题:通过增长界矩阵方法在NLP中弥合鲁棒性和通用性对抗词替换攻击
链接:https://arxiv.org/abs/2507.10330

作者:Bouri, Adnane Saoud
备注:Accepted to ACL Findings 2025


【2】Learning Private Representations through Entropy-based Adversarial Training
标题:通过基于熵的对抗训练学习私人表示
链接:https://arxiv.org/abs/2507.10194

作者:lein, Moin Nabi


【3】Towards High Supervised Learning Utility Training Data Generation: Data Pruning and Column Reordering
标题:迈向高监督学习实用程序训练数据生成:数据修剪和列重新排序
链接:https://arxiv.org/abs/2507.10088

作者:Thomas Kwok, Zeyong Zhang, Chi-Hua Wang, Guang Cheng
备注:Accepted by Agentic & GenAI Evaluation KDD2025


【4】Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow
标题:利用SO(3)平均流匹配和回流高效生成分子Conformer
链接:https://arxiv.org/abs/2507.09785

作者:Cao, Mario Geiger, Allan dos Santos Costa, Danny Reidenbach, Karsten Kreis, Tomas Geffner, Franco Pellegrini, Guoqing Zhou, Emine Kucukbenli
备注:ICML 2025 poster


【5】Do we need equivariant models for molecule generation?
标题:我们需要等变模型来生成分子吗?
链接:https://arxiv.org/abs/2507.09753

作者:wara, Joshua Rackers, Patricia Suriana, Pan Kessel, Max Shen, Andrew Martin Watkins, Michael Maser


【6】CAN-Trace Attack: Exploit CAN Messages to Uncover Driving Trajectories
标题:CAN跟踪攻击:利用CAN消息揭露驾驶轨迹
链接:https://arxiv.org/abs/2507.09624

作者:in, Baihe Ma, Xu Wang, Guangsheng Yu, Ying He, Wei Ni, Ren Ping Liu
备注:None


【7】DRAGD: A Federated Unlearning Data Reconstruction Attack Based on Gradient Differences
标题:BRAWD:基于梯度差异的联邦取消学习数据重建攻击
链接:https://arxiv.org/abs/2507.09602

作者:u, Junchao Fan, Jiaqi Liu, Xiaolin Chang


【8】La-Proteina: Atomistic Protein Generation via Partially Latent Flow Matching
标题:La-Proteina:通过部分潜伏流匹配产生原子蛋白质
链接:https://arxiv.org/abs/2507.09466

作者:fner, Kieran Didi, Zhonglin Cao, Danny Reidenbach, Zuobai Zhang, Christian Dallago, Emine Kucukbenli, Karsten Kreis, Arash Vahdat


【9】Shortening the Trajectories: Identity-Aware Gaussian Approximation for Efficient 3D Molecular Generation
标题:缩短轨迹:识别高斯逼近以实现高效3D分子生成
链接:https://arxiv.org/abs/2507.09043

作者: Qu, Wenhan Gao, Yi Liu


【10】Next-Generation Travel Demand Modeling with a Generative Framework for Household Activity Coordination
标题:具有家庭活动协调生成框架的下一代旅行需求建模
链接:https://arxiv.org/abs/2507.08871

作者:ao, Haoxuan Ma, Yifan Liu, Yuxiang Wei, Brian Yueshuai He, Chris Stanford, Jiaqi Ma
备注:8 pages, 7 figures


【11】Recurrent Expansion: A Pathway Toward the Next Generation of Deep Learning
标题:循环扩展:迈向下一代深度学习的途径
链接:https://arxiv.org/abs/2507.08828

作者:ghout


半/弱/无/有监督|不确定性|主动学习(7篇)

【1】Self-supervised Learning on Camera Trap Footage Yields a Strong Universal Face Embedder
标题:相机陷阱镜头上的自监督学习产生了强大的通用人脸嵌入器
链接:https://arxiv.org/abs/2507.10552

作者:Iashin, Horace Lee, Dan Schofield, Andrew Zisserman
备注:Accepted for publication. Project page, code and weights: this https URL


【2】CLA: Latent Alignment for Online Continual Self-Supervised Learning
标题:CLA:在线持续自我监督学习的潜在一致
链接:https://arxiv.org/abs/2507.10434

作者:ignoni, Andrea Cossu, Alexandra Gomez-Villa, Joost van de Weijer, Antonio Carta
备注:Accepted at CoLLAs 2025 conference


【3】Enhancing ALS Progression Tracking with Semi-Supervised ALSFRS-R Scores Estimated from Ambient Home Health Monitoring
标题:通过从周围家庭健康监测中估计的半监督ALSFRS-R分数来增强ALS进展跟踪
链接:https://arxiv.org/abs/2507.09460

作者:hal, William E. Janes, Mihail Popescu, Xing Song
备注:31 pages, 8 Figures


【4】Impute With Confidence: A Framework for Uncertainty Aware Multivariate Time Series Imputation
标题:充满信心的指责:意识不确定性的多元时间序列插补框架
链接:https://arxiv.org/abs/2507.09353

作者:eatherhead, Anna Goldenberg


【5】Multimodal Cardiovascular Risk Profiling Using Self-Supervised Learning of Polysomnography
标题:使用多导睡眠图的自我监督学习进行多模式心血管风险分析
链接:https://arxiv.org/abs/2507.09009

作者: He, Huayu Li, Geng Yuan, William D.S. Killgore, Stuart F. Quan, Chen X. Chen, Ao Li


【6】Simulation as Supervision: Mechanistic Pretraining for Scientific Discovery
标题:模拟作为监督:科学发现的机械预训练
链接:https://arxiv.org/abs/2507.08977

作者:dley, Reiden Magdaleno, Christopher Harding, Marisa Eisenberg


【7】Discovering Governing Equations in the Presence of Uncertainty
标题:在不确定性的情况下发现治理方程
链接:https://arxiv.org/abs/2507.09740

作者:abiyi, Han Hu, Ashif Iquebal
备注:24 pages, 5 figures


迁移|Zero/Few/One-Shot|自适应(21篇)

【1】Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation
标题:迭代混合:学习动态迭代深度以实现自适应令牌级计算
链接:https://arxiv.org/abs/2507.10524

作者:ae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Aaron Courville, Se-Young Yun
备注:36 pages, 9 figures, 14 tables, codes at this https URL


【2】RAPNet: A Receptive-Field Adaptive Convolutional Neural Network for Pansharpening
标题:RAPNet:一种用于Panshering的感受场自适应卷积神经网络
链接:https://arxiv.org/abs/2507.10461

作者: Chengxu Yang
备注:To appear in the proceedings of the 6th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA 2025). 5 pages, 6 figures


【3】Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout
标题:具有异类数据和自适应辍学的高效联邦学习
链接:https://arxiv.org/abs/2507.10430

作者:eichen Ma, Yang Zhou, Jingbo Zhou, Ruoming Jin, Dejing Dou, Huaiyu Dai, Haixun Wang, Patrick Valduriez
备注:29 pages, to appear in ACM Transactions on Knowledge Discovery from Data (TKDD)


【4】Kernel-Adaptive PI-ELMs for Forward and Inverse Problems in PDEs with Sharp Gradients
标题:具有尖锐影响的偏置方程中正向和逆问题的核自适应PI-ELM
链接:https://arxiv.org/abs/2507.10241

作者:vedi, Balaji Srinivasan, Monica Sigovan, Bruno Sixou


【5】Domain Borders Are There to Be Crossed With Federated Few-Shot Adaptation
标题:联邦Few-Shot改编将跨越领域边界
链接:https://arxiv.org/abs/2507.10160

作者:der, Christoph Raab, Frank-Michael Schleif
备注:Extension of this http URL


【6】A Transfer Learning-Based Method for Water Body Segmentation in Remote Sensing Imagery: A Case Study of the Zhada Tulin Area
标题:基于迁移学习的遥感影像水体分割方法--以札达图林地区为例
链接:https://arxiv.org/abs/2507.10084

作者:en (Tibet University), Xin Tong (Northwestern Polytechnical University)
备注:13 pages, 6 figures, 2 tables


【7】Bridging Neural Networks and Dynamic Time Warping for Adaptive Time Series Classification
标题:自适应时间序列分类的神经网络和动态时间扭曲的桥梁
链接:https://arxiv.org/abs/2507.09826

作者:, Zichong Wang, Chenhao Wu, Wenbin Zhang


【8】NegRefine: Refining Negative Label-Based Zero-Shot OOD Detection
标题:NegRefine:完善基于负标签的Zero-ShotOOD检测
链接:https://arxiv.org/abs/2507.09795

作者:in Ansari, Ke Wang, Pulei Xiong
备注:Accepted to ICCV 2025


【9】Energy Dissipation Rate Guided Adaptive Sampling for Physics-Informed Neural Networks: Resolving Surface-Bulk Dynamics in Allen-Cahn Systems
标题:物理信息神经网络的能量消耗率引导自适应采样:解析艾伦-卡恩系统中的表面-体动力学
链接:https://arxiv.org/abs/2507.09757

作者:i, Wenkai Yu, Qi Wang
备注:32 pages, 22 figures


【10】VDInstruct: Zero-Shot Key Information Extraction via Content-Aware Vision Tokenization
标题:VDDirecct:通过内容感知视觉令牌化的Zero-Shot关键信息提取
链接:https://arxiv.org/abs/2507.09531

作者:n, Giang Nguyen, Hung Dao, Thao Do, Daeyoung Kim
备注:Under Review


【11】Domain Adaptation and Multi-view Attention for Learnable Landmark Tracking with Sparse Data
标题:稀疏数据可学习地标跟踪的领域适应和多视角关注
链接:https://arxiv.org/abs/2507.09420

作者:hase Jr, Karthik Dantu
备注:Presented at the RSS Space Robotics Workshop 2025. Poster available online at this https URL


【12】Real-Time Adaptive Motion Planning via Point Cloud-Guided, Energy-Based Diffusion and Potential Fields
标题:通过点云引导、基于能量的扩散和势场的实时自适应运动规划
链接:https://arxiv.org/abs/2507.09383

作者:hu Teshome, Kian Behzad, Octavia Camps, Michael Everett, Milad Siami, Mario Sznaier
备注:Accepted to IEEE RA-L 2025


【13】ViT-ProtoNet for Few-Shot Image Classification: A Multi-Benchmark Evaluation
标题:用于Few-Shot图像分类的ViT-ProtoNet:多基准评估
链接:https://arxiv.org/abs/2507.09299

作者:p Mutlu, Şengül Doğan, Türker Tuncer
备注:All codes are available at this https URL


【14】Controllable Patching for Compute-Adaptive Surrogate Modeling of Partial Differential Equations
标题:偏微方程计算自适应代理建模的可控修补
链接:https://arxiv.org/abs/2507.09264

作者:hopadhyay, Michael McCabe, Ruben Ohana, Miles Cranmer


【15】Behavioral Exploration: Learning to Explore via In-Context Adaptation
标题:行为探索:学会通过上下文适应进行探索
链接:https://arxiv.org/abs/2507.09041

作者:genmaker, Zhiyuan Zhou, Sergey Levine


【16】DAFOS: Dynamic Adaptive Fanout Optimization Sampler
标题:DAFOS:动态自适应风扇优化采样器
链接:https://arxiv.org/abs/2507.08845

作者:ah, Young-Koo Lee


【17】Gradients as an Action: Towards Communication-Efficient Federated Recommender Systems via Adaptive Action Sharing
标题:作为行动的参与者:通过自适应行动共享实现通信高效的联邦推荐系统
链接:https://arxiv.org/abs/2507.08842

作者:u, Chentao Jia, Ming Hu, Xiaofei Xie, Mingsong Chen
备注:This paper has been accepted by ACM SIGKDD 2025


【18】Zero-Shot Neural Architecture Search with Weighted Response Correlation
标题:具有加权响应相关性的Zero-Shot神经架构搜索
链接:https://arxiv.org/abs/2507.08841

作者: Luoyu Chen, Jungang Xu, Jianwei Tai, Yiyu Wang, Shuaimin Li


【19】An Enhanced Classification Method Based on Adaptive Multi-Scale Fusion for Long-tailed Multispectral Point Clouds
标题:基于自适应多尺度融合的长尾多光谱点云增强分类方法
链接:https://arxiv.org/abs/2412.11407

作者:iu, BangYan Hu, YanFeng Gu, Xian Li, Aleksandra Pižurica
备注:16 pages, 9 figures, 5 tables


【20】Nesterov Finds GRAAL: Optimal and Adaptive Gradient Method for Convex Optimization
标题:Nesterov发现GRAAL:凸优化的最佳自适应梯度方法
链接:https://arxiv.org/abs/2507.09823

作者: Borodich, Dmitry Kovalev


【21】A Generalization Theory for Zero-Shot Prediction
标题:一种推广的零炮预测理论
链接:https://arxiv.org/abs/2507.09128

作者:ta, Zaid Harchaoui
备注:Published at ICML '25 (Oral)


强化学习(7篇)

【1】Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination
标题:推理还是精简?由于数据污染,强化学习的结果不可靠
链接:https://arxiv.org/abs/2507.10532

作者:, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao Zhou, Yanwei Fu, Qin Liu, Songyang Zhang, Qi Zhang
备注:26 pages


【2】Adaptability in Multi-Agent Reinforcement Learning: A Framework and Unified Review
标题:多智能体强化学习的适应性:框架和统一评论
链接:https://arxiv.org/abs/2507.10142

作者:Mohamad A Hady, Jianglin Qiao, Jimmy Cao, Mahardhika Pratama, Ryszard Kowalczyk


【3】Intersection of Reinforcement Learning and Bayesian Optimization for Intelligent Control of Industrial Processes: A Safe MPC-based DPG using Multi-Objective BO
标题:强化学习和Bayesian优化的交叉用于工业过程智能控制:使用多目标BO的安全基于MPC的DPG
链接:https://arxiv.org/abs/2507.09864

作者:ejatbakhsh Esfahani, Javad Mohammadpour Velni


【4】Consistency Trajectory Planning: High-Quality and Efficient Trajectory Optimization for Offline Model-Based Reinforcement Learning
标题:一致性轨迹规划:基于模型的离线强化学习的高质量、高效的轨迹优化
链接:https://arxiv.org/abs/2507.09534

作者:Wang, Takuya Hiraoka, Yoshimasa Tsuruoka


【5】Continual Reinforcement Learning by Planning with Online World Models
标题:通过使用在线世界模型进行规划进行持续强化学习
链接:https://arxiv.org/abs/2507.09177

作者:u, Guoji Fu, Chao Du, Wee Sun Lee, Min Lin
备注:ICML 2025 Spotlight


【6】Deep Reinforcement Learning with Gradient Eligibility Traces
标题:具有梯度资格痕迹的深度强化学习
链接:https://arxiv.org/abs/2507.09087

作者:limy, Brett Daley, Andrew Patterson, Marlos C. Machado, Adam White, Martha White
备注:None


【7】Assuring the Safety of Reinforcement Learning Components: AMLAS-RL
标题:确保强化学习组件的安全性:AMLAS-RL
链接:https://arxiv.org/abs/2507.08848

作者:rie Imrie, Ioannis Stefanakos, Sepeedeh Shahbeigi, Richard Hawkins, Simon Burton


元学习(1篇)

【1】Meta-autoencoders: An approach to discovery and representation of relationships between dynamically evolving classes
标题:元自动编码器:一种动态演化类间关系的发现和表示方法
链接:https://arxiv.org/abs/2507.09362

作者:ron, Smadar Szekely, Irun Cohen, David Harel


分层学习(1篇)

【1】Hierarchical Abstraction Enables Human-Like 3D Object Recognition in Deep Learning Models
标题:分层抽象在深度学习模型中实现类人3D对象识别
链接:https://arxiv.org/abs/2507.09830

作者:, Philip J. Kellman, Hongjing Lu
备注:None


医学相关(7篇)

【1】Lightweight Model for Poultry Disease Detection from Fecal Images Using Multi-Color Space Feature Optimization and Machine Learning
标题:使用多色空间特征优化和机器学习从粪便图像中检测家禽疾病的轻量级模型
链接:https://arxiv.org/abs/2507.10056

作者:Shoriful Islam, Md. Rakib Hassan, Macbah Uddin, Md. Shahidur Rahman


【2】TolerantECG: A Foundation Model for Imperfect Electrocardiogram
标题:耐受性心电图:不完美心电图的基础模型
链接:https://arxiv.org/abs/2507.09887

作者:yen Dang, Thang Pham, Ngan Le, Van Nguyen
备注:10 pages, 6 figures. Accepted to ACM Multimedia 2025


【3】An Automated Classifier of Harmful Brain Activities for Clinical Usage Based on a Vision-Inspired Pre-trained Framework
标题:基于视觉启发的预训练框架的临床有害大脑活动自动分类器
链接:https://arxiv.org/abs/2507.08874

作者:, Xiaopeng Si, Runnan He, Xiao Hu, Peter Smielewski, Wenlong Wang, Xiaoguang Tong, Wei Yue, Meijun Pang, Kuo Zhang, Xizi Song, Dong Ming, Xiuyun Liu


【4】A Brain Tumor Segmentation Method Based on CLIP and 3D U-Net with Cross-Modal Semantic Guidance and Multi-Level Feature Fusion
标题:基于CLIP和3D U-Net的跨模式语义引导和多层特征融合脑肿瘤分割方法
链接:https://arxiv.org/abs/2507.09966

作者:ang
备注:13 pages,6 figures


【5】Advanced U-Net Architectures with CNN Backbones for Automated Lung Cancer Detection and Segmentation in Chest CT Images
标题:具有CNN主干的高级U-Net架构,用于胸部CT图像中的自动肺癌检测和分割
链接:https://arxiv.org/abs/2507.09898

作者:olkarieha, Kiana Kiashemshakib, Sajjad Rezvani Boroujenic, Nasibeh Asadi Isakand
备注:This manuscript has 20 pages and 10 figures. It is submitted to the Journal 'Scientific Reports'


【6】PanoDiff-SR: Synthesizing Dental Panoramic Radiographs using Diffusion and Super-resolution
标题:PanoDiff-SR:使用扩散和超分辨率合成牙科全景射线照片
链接:https://arxiv.org/abs/2507.09227

作者:in, Bruna Neves de Freitas, Andreas Basse-OConnor, Alexandros Iosifidis, Ruben Pauwels


【7】Multi-omic Prognosis of Alzheimer's Disease with Asymmetric Cross-Modal Cross-Attention Network
标题:不对称跨模式交叉注意力网络对阿尔茨海默病的多组预后
链接:https://arxiv.org/abs/2507.08855

作者:, Jiang Shi Zhong, Zhou Su Juan


蒸馏|知识提取(1篇)

【1】Feature Distillation is the Better Choice for Model-Heterogeneous Federated Learning
标题:特征提取是模型异类联邦学习的更好选择
链接:https://arxiv.org/abs/2507.10348

作者


推荐(4篇)

【1】Benchmarking and Evaluation of AI Models in Biology: Outcomes and Recommendations from the CZI Virtual Cells Workshop
标题:生物学中人工智能模型的基准和评估:CZZ虚拟细胞研讨会的成果和建议
链接:https://arxiv.org/abs/2507.10502

作者 : Fahsbender, Alma Andersson, Jeremy Ash, Polina Binder, Daniel Burkhardt, Benjamin Chang, Georg K. Gerber, Anthony Gitter, Patrick Godau, Ankit Gupta, Genevieve Haliburton, Siyu He, Trey Ideker, Ivana Jelic, Aly Khan, Yang-Joon Kim, Aditi Krishnapriyan, Jon M. Laurent, Tianyu Liu 28, Emma Lundberg, Shalin B. Mehta, Rob Moccia, Angela Oliveira Pisco, Katherine S. Pollard, Suresh Ramani, Julio Saez-Rodriguez, Yasin Senbabaoglu, Elana Simon, Srinivasan Sivanandan, Gustavo Stolovitzky, Marc Valer, Bo Wang, Xikun Zhang, James Zou, Katrina Kalantar


【2】Radial Neighborhood Smoothing Recommender System
标题:辐射邻近平滑推荐系统
链接:https://arxiv.org/abs/2507.09952

作者:ng, Yumou Qiu
备注:34 pages, 2 figures. Submitted to NeurIPS 2025


【3】Identifying Offline Metrics that Predict Online Impact: A Pragmatic Strategy for Real-World Recommender Systems
标题:识别预测在线影响的离线收件箱:现实世界推荐系统的实用策略
链接:https://arxiv.org/abs/2507.09566

作者:, Philipp Normann
备注:This work was accepted for publication in the 19th ACM Conference on Recommender Systems (RecSys 2025). The final published version will be available at the ACM Digital Library


【4】S2SRec2: Set-to-Set Recommendation for Basket Completion with Recipe
标题:S2 SRec2:用配方完成篮子的套对套推荐
链接:https://arxiv.org/abs/2507.09101

作者:, Omid Memarrast, Shiqin Cai, Sinduja Subramaniam, Evren Korpeoglu, Kannan Achan


聚类(1篇)

【1】Average Sensitivity of Hierarchical $k$-Median Clustering
标题:分层$k$的平均敏感性-中位数聚集
链接:https://arxiv.org/abs/2507.10296

作者:, Weiqiang He, Ruobing Bai, Pan Peng


超分辨率|去噪|去模糊|去雾(1篇)

【1】Investigating the Robustness of Extreme Precipitation Super-Resolution Across Climates
标题:不同气候条件下极端降水超分辨率的稳健性研究
链接:https://arxiv.org/abs/2507.09166

作者:rgeau, Erwan Koch, David Leutwyler, Gregoire Mariethoz, Valerie Chavez-Demoulin, Tom Beucler
备注:31 pages, 9 figures, 1 table, submitted to AGU JAMES


自动驾驶|车辆|车道检测等(3篇)

【1】Multi-residual Mixture of Experts Learning for Cooperative Control in Multi-vehicle Systems
标题:基于多残差混合专家学习的多车系统协同控制
链接:https://arxiv.org/abs/2507.09836

作者:ayawardana, Sirui Li, Yashar Farid, Cathy Wu


【2】DAA*: Deep Angular A Star for Image-based Path Planning
标题:DAA*:Deep Angular A Star,基于图像的路径规划
链接:https://arxiv.org/abs/2507.09305

作者
备注:International Conference on Computer Vision (ICCV), 2025


【3】On the Fragility of Multimodal Perception to Temporal Misalignment in Autonomous Driving
标题:自动驾驶中多模式感知对时间失调的脆弱性
链接:https://arxiv.org/abs/2507.09095

作者:Shahriar, Md Mohaimin Al Barat, Harshavardhan Sundar, Naren Ramakrishnan, Y. Thomas Hou, Wenjing Lou
备注:16 pages


联邦学习|隐私保护|加密(2篇)

【1】MTF-Grasp: A Multi-tier Federated Learning Approach for Robotic Grasping
标题:MTF-Grasp:一种用于机器人抓取的多层联邦学习方法
链接:https://arxiv.org/abs/2507.10158

作者:h Zaland, Erik Elmroth, Monowar Bhuyan
备注:The work is accepted for presentation at IEEE SMC 2025


【2】Lightweight Federated Learning over Wireless Edge Networks
标题:无线边缘网络上的联合轻量级学习
链接:https://arxiv.org/abs/2507.09546

作者: Hou, Jingjing Wang, Jun Du, Chunxiao Jiang, Yong Ren, Dusit Niyato


推理|分析|理解|解释(20篇)

【1】Improving Remote Sensing Classification using Topological Data Analysis and Convolutional Neural Networks
标题:利用布局数据分析和卷积神经网络改进遥感分类
链接:https://arxiv.org/abs/2507.10381

作者:arma
备注:9 pages, 8 figures


【2】MoCap-Impute: A Comprehensive Benchmark and Comparative Analysis of Imputation Methods for IMU-based Motion Capture Data
标题:MoCap-Impute:基于IMU的运动捕获数据的综合基准和插补方法的比较分析
链接:https://arxiv.org/abs/2507.10334

作者:ekhit, Ahmad Salah, Ahmed Salim Alrawahi, Tarek Attia, Ahmed Ali, Esraa Eldesokey, Ahmed Fathalla
备注:22 pages, 7 figures, 3 algorithms, 2 tables


【3】Visual Analytics for Explainable and Trustworthy Artificial Intelligence
标题:用于可解释且值得信赖的人工智能的视觉分析
链接:https://arxiv.org/abs/2507.10240

作者:hatzimparmpas
备注:None


【4】Understanding the Rank of Tensor Networks via an Intuitive Example-Driven Approach
标题:通过直观的示例驱动方法了解张量网络的排名
链接:https://arxiv.org/abs/2507.10170

作者:ou, Giorgos Iacovides, Kriton Konstantinidis, Ilya Kisil, Danilo Mandic


【5】Analysis of AI Techniques for Orchestrating Edge-Cloud Application Migration
标题:描述边缘云应用程序迁移的人工智能技术分析
链接:https://arxiv.org/abs/2507.10119

作者:ayev, Ahmad Anaqreh, Carolina Fortuna


【6】Explainable AI in Genomics: Transcription Factor Binding Site Prediction with Mixture of Experts
标题:基因组学中的可解释人工智能:混合专家预测转录因子结合位点
链接:https://arxiv.org/abs/2507.09754

作者:ipathi, Ian E. Nielsen, Muhammad Umer, Ravi P. Ramachandran, Ghulam Rasool


【7】Holistix: A Dataset for Holistic Wellness Dimensions Analysis in Mental Health Narratives
标题:Holistix:心理健康叙事中整体健康维度分析的数据集
链接:https://arxiv.org/abs/2507.09565

作者:keel, Tanvir Ahmad, Chandni Saxena
备注:7 Pages


【8】Assessing reliability of explanations in unbalanced datasets: a use-case on the occurrence of frost events
标题:评估不平衡数据集中解释的可靠性:霜冻事件发生的用例
链接:https://arxiv.org/abs/2507.09545

作者:scotto, Valentina Blasone, Alex Rodriguez, Alessandro Bonaita, Luca Bortolussi
备注:Late Breaking Work presented at the 3rd World Conference on eXplainable Artificial Intelligence (XAI2025)


【9】An Analysis of Action-Value Temporal-Difference Methods That Learn State Values
标题:学习状态值的时间值时间差方法分析
链接:https://arxiv.org/abs/2507.09523

作者:ey, Prabhat Nagarajan, Martha White, Marlos C. Machado
备注:Published at RLC/RLJ 2025


【10】MI CAM: Mutual Information Weighted Activation Mapping for Causal Visual Explanations of Convolutional Neural Networks
标题:MI CAM:卷积神经网络因果视觉推理的互信息加权激活映射
链接:https://arxiv.org/abs/2507.09092

作者:r, Narayan S Iyer, Rugmini Ammal P
备注:12 pages, 10 figures


【11】Infinite Video Understanding
标题:无限的视频理解
链接:https://arxiv.org/abs/2507.09068

作者:g, Xiangyu Chen, Jixiang Luo, Mengxi Jia, Changzhi Sun, Ruilong Ren, Jingren Liu, Hao Sun, Xuelong Li


【12】BrainLesion Suite: A Flexible and User-Friendly Framework for Modular Brain Lesion Image Analysis
标题:BrainLesion套件:一个灵活且用户友好的模块化脑损伤图像分析框架
链接:https://arxiv.org/abs/2507.09036

作者:ofler, Marcel Rosier, Mehdi Astaraki, Hendrik Möller, Ilhem Isra Mekki, Josef A. Buchner, Anton Schmick, Arianna Pfiffer, Eva Oswald, Lucas Zimmer, Ezequiel de la Rosa, Sarthak Pati, Julian Canisius, Arianna Piffer, Ujjwal Baid, Mahyar Valizadeh, Akis Linardos, Jan C. Peeken, Surprosanna Shit, Felix Steinbauer, Daniel Rueckert, Rolf Heckemann, Spyridon Bakas, Jan Kirschke, Constantin von See, Ivan Ezhov, Marie Piraud, Benedikt Wiestler, Bjoern Menze
备注:16p, 3f


【13】Accuracy and Consumption analysis from a compressed model by CompactifAI from Multiverse Computing
标题:Multiverse Computing的CompacifAI对压缩模型进行准确性和消耗分析
链接:https://arxiv.org/abs/2507.08836

作者:vet, Shashank Chamoli, Sarah Oury, Srishti Singhal


【14】Efficient Triple Modular Redundancy for Reliability Enhancement of DNNs Using Explainable AI
标题:使用可解释AI的DNN可靠性增强的高效三模块冗余
链接:https://arxiv.org/abs/2507.08829

作者:oush, Nastaran Shirazi, Mohsen Raji


【15】Think Clearly: Improving Reasoning via Redundant Token Pruning
标题:清晰思考:通过冗余令牌修剪改进推理
链接:https://arxiv.org/abs/2507.08806

作者:oi, Jimin Lee, Jihoon Tack, Woomin Song, Saket Dingliwal, Sai Muralidhar Jayanthi, Bhavana Ganesh, Jinwoo Shin, Aram Galstyan, Sravan Babu Bodapati


【16】Lightweight Cloud Masking Models for On-Board Inference in Hyperspectral Imaging
标题:用于高光谱成像机载推理的轻量级云遮蔽模型
链接:https://arxiv.org/abs/2507.08052

作者:, António Pereira, Fabio Gentile, Aser Cortines, Sam Mugel, Román Orús, Stelios P. Neophytides, Michalis Mavrovouniotis


【17】Regret Analysis of Posterior Sampling-Based Expected Improvement for Bayesian Optimization
标题:基于后验抽样的Bayesian优化预期改进的遗憾分析
链接:https://arxiv.org/abs/2507.09828

作者 :eno, Yu Inatsu, Masayuki Karasuyama, Ichiro Takeuchi
备注:35pages, 5 figures


【18】Sensitivity Analysis of Transport and Radiation in NeuralPlasmaODE for ITER Burning Plasmas
标题:ITER燃烧等离子体神经等离子体传输和辐射敏感性分析
链接:https://arxiv.org/abs/2507.09432

作者:u, Weston M. Stacey


【19】Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood
标题:通过时空建模和惩罚经验可能性的预测性因果推理
链接:https://arxiv.org/abs/2507.08896

作者:Lee, Hye Yeon Sin, Joonsung Kang


【20】Mind the Gap: Navigating Inference with Optimal Transport Maps
标题:注意差距:利用最佳交通地图进行推理
链接:https://arxiv.org/abs/2507.08867

作者:ren, Tobias Golling, Francesco Armando Di Bello, Christopher Pollard
备注:23 pages, 13 figures


检测相关(7篇)

【1】BenchReAD: A systematic benchmark for retinal anomaly detection
标题:BenchReAD:视网膜异常检测的系统基准
链接:https://arxiv.org/abs/2507.10492

作者:an, Hong-Yu Zhou, Zhanli Hu, Jing Qin
备注:MICCAI 2025


【2】From BERT to Qwen: Hate Detection across architectures
标题:从BERT到Qwen:跨架构的仇恨检测
链接:https://arxiv.org/abs/2507.10468

作者:on, Saúl Fenollosa, Jon Lecumberri
备注:4 pages, 5 figures. EE-559 Deep Learning course project (Group 11)


【3】Evaluating Fake Music Detection Performance Under Audio Augmentations
标题:评估音频增强下的假音乐检测性能
链接:https://arxiv.org/abs/2507.10447

作者:oka, Tomasz Wężowicz, Dominik Sidorczuk, Mateusz Modrzejewski
备注:ISMIR 2025 LBD, 2 pages + bibliography, 1 figure


【4】DNS Tunneling: Threat Landscape and Improved Detection Solutions
标题:DNS隧道:威胁格局和改进的检测解决方案
链接:https://arxiv.org/abs/2507.10267

作者:irov, Baran Isik, Bilal Ihsan Tuncer, Serif Bahtiyar


【5】Credit Card Fraud Detection Using RoFormer Model With Relative Distance Rotating Encoding
标题:使用RoFormer模型和相对距离旋转编码的信用卡欺诈检测
链接:https://arxiv.org/abs/2507.09385

作者:es, Vasco Cortez
备注:2025 IEEE Conference on Artificial Intelligence (CAI)


【6】Advanced Health Misinformation Detection Through Hybrid CNN-LSTM Models Informed by the Elaboration Likelihood Model (ELM)
标题:通过由EQUALY模型(ELM)告知的混合CNN-LSTM模型进行高级健康错误信息检测
链接:https://arxiv.org/abs/2507.09149

作者:ikosana, Sean Maudsley-Barton, Oluwaseun Ajao
备注:11 Pages, 2 Figures, 3 Tables conference paper to appear in proceedings of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA'25)


【7】Fair-FLIP: Fair Deepfake Detection with Fairness-Oriented Final Layer Input Prioritising
标题:Fair-FLIP:具有面向公平的最终层输入优先级的公平Deepfake检测
链接:https://arxiv.org/abs/2507.08912

作者:andala, Fatima Ezzeddine, Natalia Rusin, Silvia Giordano, Omran Ayoub
备注:None


分类|识别(8篇)

【1】Recognizing Dementia from Neuropsychological Tests with State Space Models
标题:利用状态空间模型从神经心理学测试中识别痴呆症
链接:https://arxiv.org/abs/2507.10311

作者:ng, Saurabhchand Bhati, Cody Karjadi, Rhoda Au, James Glass


【2】Play Style Identification Using Low-Level Representations of Play Traces in MicroRTS
标题:使用MicroRTS中播放痕迹的低级表示进行播放风格识别
链接:https://arxiv.org/abs/2507.10172

作者: Xia, Jeremy Gow, Simon Lucas
备注:Accepted as Short Paper for IEEE CoG


【3】Long-Tailed Data Classification by Increasing and Decreasing Neurons During Training
标题:通过训练期间增加和减少神经元进行长尾数据分类
链接:https://arxiv.org/abs/2507.09940

作者:ai, Kazuhiro Hotta


【4】Post-Training Quantization of Generative and Discriminative LSTM Text Classifiers: A Study of Calibration, Class Balance, and Robustness
标题:生成性和区分性LSTM文本分类器的训练后量化:校准、类别平衡和稳健性研究
链接:https://arxiv.org/abs/2507.09687

作者:qur Rahaman, Elliot Chang, Tasmiah Haque, Srinjoy Das


【5】Theory-Informed Improvements to Classifier-Free Guidance for Discrete Diffusion Models
标题:离散扩散模型无分类器指导的理论改进
链接:https://arxiv.org/abs/2507.08965

作者:as, Ye He, Chieh-Hsin Lai, Yuta Takida, Yuki Mitsufuji, Molei Tao


【6】Simulating Biases for Interpretable Fairness in Offline and Online Classifiers
标题:离线和在线分类器中模拟可解释公平性的偏差
链接:https://arxiv.org/abs/2507.10154

作者:nácio, Zafeiris Kokkinogenis, Vitor Cerqueira, Carlos Soares
备注:17 pages, 2 figures, 1 equation, 3 tables: 1 in main body and 2 in the appendix. Submitted to the SynDAiTE: Synthetic Data for AI Trustworthiness and Evolution workshop from ECMLPKDD 2025, anonymized


【7】Conformation-Aware Structure Prediction of Antigen-Recognizing Immune Proteins
标题:抗原识别免疫蛋白的认知结构预测
链接:https://arxiv.org/abs/2507.09054

作者:A. Dreyer, Jan Ludwiczak, Karolis Martinkus, Brennan Abanades, Robert G. Alberstein, Pan Kessel, Pranav Rao, Jae Hyeon Lee, Richard Bonneau, Andrew M. Watkins, Franziska Seeger
备注:17 pages, 12 figures, 2 tables, code at this https URL, model weights at this https URL


【8】Fixed-Confidence Multiple Change Point Identification under Bandit Feedback
标题:Bandit反馈下的固定置信度多变点识别
链接:https://arxiv.org/abs/2507.08994

作者:zzaro, Ciara Pike-Burke
备注:ICML 2025


表征(5篇)

【1】Text-Driven Causal Representation Learning for Source-Free Domain Generalization
标题:用于无源领域概括的文本驱动因果表示学习
链接:https://arxiv.org/abs/2507.09961

作者:u, Mao Ye, Nianxin Li, Shuaifeng Li, Jinlin Wu, Xiatian Zhu, Lei Deng, Hongbin Liu, Jiebo Luo, Zhen Lei
备注:Under Review


【2】Discrete Differential Principle for Continuous Smooth Function Representation
标题:连续光滑函数表示的离散微分原理
链接:https://arxiv.org/abs/2507.09480

作者:ng, Yihua Tan, Shiqi Liu


【3】Fair CCA for Fair Representation Learning: An ADNI Study
标题:公平代表学习的公平国家评估:ADNI研究
链接:https://arxiv.org/abs/2507.09382

作者:u, Zhanliang Wang, Zhuoping Zhou, Boning Tong, Zexuan Wang, Jingxuan Bao, Duy Duong-Tran, Qi Long, Li Shen


【4】Learning Diffusion Models with Flexible Representation Guidance
标题:具有灵活表示指导的学习扩散模型
链接:https://arxiv.org/abs/2507.08980

作者:ng, Cai Zhou, Sharut Gupta, Zongyu Lin, Stefanie Jegelka, Stephen Bates, Tommi Jaakkola


【5】WellPINN: Accurate Well Representation for Transient Fluid Pressure Diffusion in Subsurface Reservoirs with Physics-Informed Neural Networks
标题:WellPINN:利用物理信息神经网络准确描述地下储层中的瞬时流体压力扩散
链接:https://arxiv.org/abs/2507.09330

作者:ter (1 and 2), Qingkai Kong (3), Sara Hanson-Hedgecock (1), Víctor Vilarrasa (1) ((1) Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Spain, (2) Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain, (3) Lawrence Livermore National Laboratory, Livermore, USA)


优化|敛散性(19篇)

【1】On the Performance of Differentially Private Optimization with Heavy-Tail Class Imbalance
标题:重尾类不平衡差分私有优化算法的性能研究
链接:https://arxiv.org/abs/2507.10536

作者:ang, Alain Zhiyanov, Mathias Lécuyer


【2】Some remarks on gradient dominance and LQR policy optimization
标题:关于梯度主导和LQR政策优化的一些看法
链接:https://arxiv.org/abs/2507.10452

作者:. Sontag
备注:This is a short paper summarizing the first part of the slides presented at my keynote at the 2025 L4DC (Learning for Dynamics & Control Conference) in Ann Arbor, Michigan, 05 June 2025. A partial bibliography has been added. A second part on neural net feedback controllers is to be added


【3】Non-exchangeable Conformal Prediction with Optimal Transport: Tackling Distribution Shifts with Unlabeled Data
标题:具有最优传输的不可交换保形预测:用未标记数据解决分布变化
链接:https://arxiv.org/abs/2507.10425

作者:C. Correia, Christos Louizos


【4】Convergence of Agnostic Federated Averaging
标题:不可知联邦平均的收敛
链接:https://arxiv.org/abs/2507.10325

作者:SeyedAbolfazl)Rahimi, Dionysis Kalogerias
备注 :5 pages, 2 figurres, CAMSAP conference


【5】A Variance-Reduced Cubic-Regularized Newton for Policy Optimization
标题:用于政策优化的方差缩减三次正规牛顿
链接:https://arxiv.org/abs/2507.10120

作者:, Zhen Zhang, Shaofu Yang
备注:13 pages, 1 figure


【6】Compression Method for Deep Diagonal State Space Model Based on $H^2$ Optimal Reduction
标题:基于$H ' 2 $最优约简的深对角状态空间模型压缩方法
链接:https://arxiv.org/abs/2507.10078

作者:kamoto, Kazuhiro Sato
备注:Accepted to IEEE Control Systems Letters


【7】PRISM: Fine-Grained Paper-to-Paper Retrieval with Multi-Aspect-Aware Query Optimization
标题:PRism:具有多方面感知查询优化的细粒度纸到纸检索
链接:https://arxiv.org/abs/2507.10057

作者:ark, Jinheon Baek, Soyeong Jeong, Sung Ju Hwang


【8】Memory-Efficient Personalization of Text-to-Image Diffusion Models via Selective Optimization Strategies
标题:通过选择性优化策略实现文本到图像扩散模型的内存高效个性化
链接:https://arxiv.org/abs/2507.10029

作者:hoi, Sunghyun Park, Hyoungwoo Park, Jeongho Kim, Sungrack Yun


【9】Neural Two-Stage Stochastic Optimization for Solving Unit Commitment Problem
标题:求解机组组合问题的神经两阶段随机优化
链接:https://arxiv.org/abs/2507.09503

作者:Shao, Jingtao Qin, Nanpeng Yu
备注:Submitted to IEEE Transactions on Power Systems


【10】On Information Geometry and Iterative Optimization in Model Compression: Operator Factorization
标题:模型压缩中的信息几何和迭代优化:运算符因式分解
链接:https://arxiv.org/abs/2507.09428

作者:umaylov, Vasileios Tsiaras, Yannis Stylianou


【11】Scaling Laws for Optimal Data Mixtures
标题:最佳数据混合的缩放定律
链接:https://arxiv.org/abs/2507.09404

作者:hukor, Louis Bethune, Dan Busbridge, David Grangier, Enrico Fini, Alaaeldin El-Nouby, Pierre Ablin


【12】Revisiting Convergence: Shuffling Complexity Beyond Lipschitz Smoothness
标题:重温融合:超越利普希茨光滑的复杂性
链接:https://arxiv.org/abs/2507.08913

作者:iran Yu, Ziyi Chen, Heng Huang


【13】Counterfactual optimization for fault prevention in complex wind energy systems
标题:复杂风能系统故障预防的反事实优化
链接:https://arxiv.org/abs/2507.08849

作者:rrizosa, Martina Fischetti, Roshell Haaker, Juan Miguel Morales


【14】Principled Foundations for Preference Optimization
标题:偏好优化的原则基础
链接:https://arxiv.org/abs/2507.07855

作者:hou, Shujian Zhang, Brice Magdalou, John Lambert, Ehsan Amid, Richard Nock, Andrew Hard


【15】Information Must Flow: Recursive Bootstrapping for Information Bottleneck in Optimal Transport
标题:信息必须流动:最佳运输中信息瓶颈的渐进引导
链接:https://arxiv.org/abs/2507.10443

作者


【16】Aligning Generative Speech Enhancement with Human Preferences via Direct Preference Optimization
标题:通过直接偏好优化将生成语音增强与人类偏好保持一致
链接:https://arxiv.org/abs/2507.09929

作者:i, Nana Hou, Yuchen Hu, Jixun Yao, Sabato Marco Siniscalchi, Eng Siong Chng


【17】Optimal High-probability Convergence of Nonlinear SGD under Heavy-tailed Noise via Symmetrization
标题:通过对称化实现重尾噪音下非线性BCD的最优高概率收敛
链接:https://arxiv.org/abs/2507.09093

作者:r Armacki, Dragana Bajovic, Dusan Jakovetic, Soummya Kar
备注:38 pages, 1 figure


【18】A Method for Learning to Solve Parametric Bilevel Optimization with Coupling Constraints
标题:具有耦合约束的参数二层优化学习方法
链接:https://arxiv.org/abs/2507.09050

作者:ary, Himanshu Sharma, Ethan King, Draguna Vrabie, Ferdinando Fioretto, Jan Drgona


【19】Stochastic Approximation with Block Coordinate Optimal Stepsizes
标题:具有块坐标最优步距的随机逼近
链接:https://arxiv.org/abs/2507.08963

作者:, Lin Xiao


预测|估计(16篇)

【1】SentiDrop: A Multi Modal Machine Learning model for Predicting Dropout in Distance Learning
标题:SentiDrop:用于预测远程学习辍学的多模式机器学习模型
链接:https://arxiv.org/abs/2507.10421

作者:rkouk, Miloud Mihoubi, Belkacem Chikhaoui
备注:International Conference on Education and New Learning Technologies (2025)


【2】Spatial Lifting for Dense Prediction
标题:密集预测的空间提升
链接:https://arxiv.org/abs/2507.10222

作者:u, Yizhe Zhang
备注:Preprint. Under review


【3】NeuTSFlow: Modeling Continuous Functions Behind Time Series Forecasting
标题:NeuTSFlow:建模时间序列预测背后的连续函数
链接:https://arxiv.org/abs/2507.09888

作者: Likang Wu, Xianquan Wang, Haoning Dang, Chun-Wun Cheng, Angelica I Aviles-Rivero, Qi Liu


【4】Frequency-aware Surrogate Modeling With SMT Kernels For Advanced Data Forecasting
标题:使用贴片核心进行频率感知代理建模,用于高级数据预测
链接:https://arxiv.org/abs/2507.09694

作者:onel, Paul Saves, Joseph Morlier
备注:AeroBest 2025, Instituto Superior Tecnico of the University of Lisbon, Portugal


【5】Symptom-Driven Personalized Proton Pump Inhibitors Therapy Using Bayesian Neural Networks and Model Predictive Control
标题:使用Bayesian神经网络和模型预测控制的症状驱动个性化质子泵抑制剂治疗
链接:https://arxiv.org/abs/2507.09685

作者:, Ilya Kolmanovsky
备注:6 pages, 5 figures


【6】Conformal Prediction for Privacy-Preserving Machine Learning
标题:隐私保护机器学习的保形预测
链接:https://arxiv.org/abs/2507.09678

作者: David Balinsky, Dominik Krzeminski, Alexander Balinsky


【7】Lightweight Deep Learning-Based Channel Estimation for RIS-Aided Extremely Large-Scale MIMO Systems on Resource-Limited Edge Devices
标题:资源有限边缘设备上的RIS辅助超大规模CDMA系统的轻量级基于深度学习的信道估计
链接:https://arxiv.org/abs/2507.09627

作者:Kamran Saeed, Ashfaq Khokhar, Shakil Ahmed


【8】Fourier Basis Mapping: A Time-Frequency Learning Framework for Time Series Forecasting
标题:傅里叶基映射:时间序列预测的时频学习框架
链接:https://arxiv.org/abs/2507.09445

作者:g, Longbing Cao, Xin You, Kun Fang, Jianxun Li, Jie Yang
备注:18 pages, 6 figures


【9】XiChen: An observation-scalable fully AI-driven global weather forecasting system with 4D variational knowledge
标题:XiChen:一个可观测扩展的完全人工智能驱动的全球天气预报系统,具有4D变分知识
链接:https://arxiv.org/abs/2507.09202

作者:g, Weicheng Ni, Lilan Huang, Tao Hao, Ben Fei, Shuo Ma, Taikang Yuan, Yanlai Zhao, Kefeng Deng, Xiaoyong Li, Boheng Duan, Lei Bai, Kaijun Ren


【10】Queue up for takeoff: a transferable deep learning framework for flight delay prediction
标题:排队起飞:用于航班延误预测的可转移深度学习框架
链接:https://arxiv.org/abs/2507.09084

作者:niel Aghanya, Ta Duong Vu, Amaëlle Diop, Charlotte Deville, Nour Imane Kerroumi, Irene Moulitsas, Jun Li, Desmond Bisandu
备注:3 figures, 20 pages references and appendix included,


【11】ToxBench: A Binding Affinity Prediction Benchmark with AB-FEP-Calculated Labels for Human Estrogen Receptor Alpha
标题:ToxBench:使用AB-BEP计算的人类雌激素受体Alpha标记物的结合亲和力预测基准
链接:https://arxiv.org/abs/2507.08966

作者: Karl Leswing, Simon K. S. Chu, Farhad Ramezanghorbani, Griffin Young, Gabriel Marques, Prerna Das, Anjali Panikar, Esther Jamir, Mohammed Sulaiman Shamsudeen, K. Shawn Watts, Ananya Sen, Hari Priya Devannagari, Edward B. Miller, Muyun Lihan, Howook Hwang, Janet Paulsen, Xin Yu, Kyle Gion, Timur Rvachov, Emine Kucukbenli, Saee Gopal Paliwal
备注:Workshop on Generative AI for Biology at ICML 2025


【12】e-Profits: A Business-Aligned Evaluation Metric for Profit-Sensitive Customer Churn Prediction
标题:e-Profits:一种面向业务的利润敏感型客户流失预测评估指标
链接:https://arxiv.org/abs/2507.08860

作者:zoor, M. Atif Qureshi, Etain Kidney, Luca Longo


【13】Foundation models for time series forecasting: Application in conformal prediction
标题:时间序列预测的基础模型:在保形预测中的应用
链接:https://arxiv.org/abs/2507.08858

作者:ur, Yassine Bouher, Duong Nguyen, Nicolas Chesneau


【14】A Hybrid Machine Learning Framework for Optimizing Crop Selection via Agronomic and Economic Forecasting
标题:通过农艺和经济预测优化作物选择的混合机器学习框架
链接:https://arxiv.org/abs/2507.08832

作者:Mallikarjun Sindhur, Pavithra C, Nivya Muchikel


【15】Machine-Precision Prediction of Low-Dimensional Chaotic Systems
标题:低维混乱系统的机器精度预测
链接:https://arxiv.org/abs/2507.09652

作者:Schötz, Niklas Boers


【16】Physics-informed machine learning: A mathematical framework with applications to time series forecasting
标题:基于物理的机器学习:应用于时间序列预测的数学框架
链接:https://arxiv.org/abs/2507.08906

作者:umèche
备注:Doctoral thesis, Sorbonne University. 286 pages


其他神经网络|深度学习|模型|建模(45篇)

【1】Disentangling Neural Disjunctive Normal Form Models
标题:解开神经析取范式模型
链接:https://arxiv.org/abs/2507.10546

作者:Baugh, Vincent Perreault, Matthew Baugh, Luke Dickens, Katsumi Inoue, Alessandra Russo
备注:Accepted at NeSy 2025


【2】Split Happens: Combating Advanced Threats with Split Learning and Function Secret Sharing
标题:拆分发生:通过拆分学习和函数秘密共享对抗高级威胁
链接:https://arxiv.org/abs/2507.10494

作者:han, Mindaugas Budzys, Antonis Michalas


【3】Overcoming catastrophic forgetting in neural networks
标题:克服神经网络中的灾难性遗忘
链接:https://arxiv.org/abs/2507.10485

作者:huen Yi Loke, Filippo Quadri, Gabriel Vivanco, Maximilian Casagrande, Saúl Fenollosa
备注:7 pages, 5 figures, EE-411 Fundamentals of inference and learning course project


【4】Multiple Choice Learning of Low Rank Adapters for Language Modeling
标题:语言建模低级别适配器的多项选择学习
链接:https://arxiv.org/abs/2507.10419

作者:tzelter, Hugo Malard, Mathieu Fontaine, Gaël Richard, Slim Essid, Andrei Bursuc, Patrick Pérez


【5】Stochastic Operator Network: A Stochastic Maximum Principle Based Approach to Operator Learning
标题:随机运营商网络:基于随机最大原则的运营商学习方法
链接:https://arxiv.org/abs/2507.10401

作者:back, Jingqiao Tang, Lu Lu, Feng Bao, Toan Huynh


【6】Anticipating the Selectivity of Cyclization Reaction Pathways with Neural Network Potentials
标题:利用神经网络潜力预测环化反应途径的选择性
链接:https://arxiv.org/abs/2507.10400

作者:Casetti, Dylan Anstine, Olexandr Isayev, Connor W. Coley
备注:32 pages, 5 figures


【7】Test-Time Canonicalization by Foundation Models for Robust Perception
标题:通过稳健感知的基础模型实现测试时规范化
链接:https://arxiv.org/abs/2507.10375

作者:inghal, Ryan Feng, Stella X. Yu, Atul Prakash
备注:Published at ICML 2025


【8】Enhanced DeepONet for 1-D consolidation operator learning: an architectural investigation
标题:用于1-D合并操作员学习的增强DeepONet:架构调查
链接:https://arxiv.org/abs/2507.10368

作者:hoi, Chenying Liu, Jorge Macedo


【9】Parallel Sampling of Diffusion Models on $SO(3)$
标题:$SO(3)$上扩散模型的并行抽样
链接:https://arxiv.org/abs/2507.10347

作者:Chen, Hao-Wei Chen, Tsu-Ching Hsiao, Chun-Yi Lee
备注:MVA2025


【10】Some Super-approximation Rates of ReLU Neural Networks for Korobov Functions
标题:Korobov函数的ReLU神经网络的某些超逼近率
链接:https://arxiv.org/abs/2507.10345

作者: Guozhi Zhang


【11】Deep Recurrence for Dynamical Segmentation Models
标题:动态分割模型的深度回归
链接:https://arxiv.org/abs/2507.10143

作者:has, Arlindo L. Oliveira
备注:12 pages


【12】(Almost) Free Modality Stitching of Foundation Models
标题:基础模型的(几乎)自由模态拼接
链接:https://arxiv.org/abs/2507.10015

作者:ingh, Diganta Misra, Boris Knyazev, Antonio Orvieto
备注:Pre-print


【13】Effects of structural properties of neural networks on machine learning performance
标题:神经网络结构特性对机器学习性能的影响
链接:https://arxiv.org/abs/2507.10005

作者:, Sang Hoon Lee
备注:9 pages, 6 figures


【14】Rethinking Inductive Bias in Geographically Neural Network Weighted Regression
标题:重新思考地理神经网络加权回归中的归纳偏差
链接:https://arxiv.org/abs/2507.09958

作者:Chen


【15】Iceberg: Enhancing HLS Modeling with Synthetic Data
标题:Iceberg:利用合成数据增强HLS建模
链接:https://arxiv.org/abs/2507.09948

作者:ng, Tung Nguyen, Weikai Li, Aditya Grover, Yizhou Sun, Jason Cong
备注:9 pages. accepted to ICLAD'25


【16】Algorithm Development in Neural Networks: Insights from the Streaming Parity Task
标题:神经网络中的算法开发:流媒体对等任务的见解
链接:https://arxiv.org/abs/2507.09897

作者:Rossem, Andrew M. Saxe
备注:28 pages, 20 figures


【17】AdaBrain-Bench: Benchmarking Brain Foundation Models for Brain-Computer Interface Applications
标题:AdaBrain-Bench:脑机接口应用的脑基础模型基准
链接:https://arxiv.org/abs/2507.09882

作者:, Zichen Ren, Junyu Wang, Pengyu Zhu, Yonghao Song, Mianxin Liu, Qihao Zheng, Lei Bai, Wanli Ouyang, Chunfeng Song


【18】Task Priors: Enhancing Model Evaluation by Considering the Entire Space of Downstream Tasks
标题:任务优先级:通过考虑下游任务的整个空间来增强模型评估
链接:https://arxiv.org/abs/2507.09871

作者:el, Randall Balestriero


【19】Compressed Computation: Dense Circuits in a Toy Model of the Universal-AND Problem
标题:压缩计算:普适与问题玩具模型中的密集电路
链接:https://arxiv.org/abs/2507.09816

作者:as
备注:9 pages, 9 figures


【20】Physics-informed neural networks for high-dimensional solutions and snaking bifurcations in nonlinear lattices
标题:基于物理知识的神经网络用于非线性网格中的多维解和蛇形分叉
链接:https://arxiv.org/abs/2507.09782

作者:Luthfi Shahab, Fidya Almira Suheri, Rudy Kusdiantara, Hadi Susanto
备注:Accepted for publication in Physica D: Nonlinear Phenomena


【21】Networked Information Aggregation via Machine Learning
标题:通过机器学习聚合网络信息
链接:https://arxiv.org/abs/2507.09683

作者:earns, Aaron Roth, Emily Ryu


【22】Toward Developing Machine-Learning-Aided Tools for the Thermomechanical Monitoring of Nuclear Reactor Components
标题:开发用于核反应堆部件热机械监测的机器学习辅助工具
链接:https://arxiv.org/abs/2507.09443

作者:ia Machado, Victor Coppo Leite, Elia Merzari, Arthur Motta, Roberto Ponciroli, Lander Ibarra, Lise Charlot
备注:Preprint - Nureth 21 paper


【23】Dynamic Sparse Causal-Attention Temporal Networks for Interpretable Causality Discovery in Multivariate Time Series
标题:用于多元时间序列中可解释因果关系发现的动态稀疏因果关系-注意时间网络
链接:https://arxiv.org/abs/2507.09439

作者:rkouk, Miloud Mihoubi, Belkacem Chikhaoui
备注:None


【24】A Random Matrix Theory Perspective on the Learning Dynamics of Multi-head Latent Attention
标题:随机矩阵理论视角下多头隐性注意力的学习动力学
链接:https://arxiv.org/abs/2507.09394

作者:mar Jha, Brandon Reagen
备注:ICML 2025 Workshop on High-dimensional Learning Dynamics (HiLD)


【25】Unified Linear Parametric Map Modeling and Perception-aware Trajectory Planning for Mobile Robotics
标题:移动机器人的统一线性参数地图建模和感知轨迹规划
链接:https://arxiv.org/abs/2507.09340

作者:e, Xingyu Li, Xu Liu, Zhaotong Tan, Sen Mei, Wenbo Su
备注:Submitted to IEEE Transactions on Robotics (TRO) in July 2025


【26】Optimizing Basis Function Selection in Constructive Wavelet Neural Networks and Its Applications
标题:构造性子波神经网络中基函数的优化选择及其应用
链接 :https://arxiv.org/abs/2507.09213

作者:Huang, Dong Shen, Lei Lu, Ying Tan
备注:17pages


【27】Capturing Unseen Spatial Extremes Through Knowledge-Informed Generative Modeling
标题:通过知识知情生成建模捕捉不可见的空间极端
链接:https://arxiv.org/abs/2507.09211

作者:u, Xiao Peng, Shuyue Yan, Yuntian Chen, Dongxiao Zhang, Zhixiao Niu, Hui-Min Wang, Xiaogang He


【28】Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning
标题:注意差距:保留和补偿基于CLIP的持续学习中的模式差距
链接:https://arxiv.org/abs/2507.09118

作者:ang, Xusheng Cao, Haori Lu, Yifan Meng, Fei Yang, Xialei Liu
备注:Accepted at ICCV 2025


【29】Imitation Learning in Continuous Action Spaces: Mitigating Compounding Error without Interaction
标题:连续动作空间中的模仿学习:在没有交互的情况下减轻复合误差
链接:https://arxiv.org/abs/2507.09061

作者: Zhang, Daniel Pfrommer, Nikolai Matni, Max Simchowitz


【30】Can Contrastive Learning Improve Class-Imbalanced Diffusion Model?
标题:对比学习能否改善班级不平衡扩散模型?
链接:https://arxiv.org/abs/2507.09052

作者:, Alex Villa, Gongbo Liang, Xiaoyi Lu, Meng Tang
备注:20 pages, 11 figures


【31】Confounder-Free Continual Learning via Recursive Feature Normalization
标题:通过回归特征规范化实现无混淆连续学习
链接:https://arxiv.org/abs/2507.09031

作者:, Camila Gonzalez, Mohammad H. Abbasi, Qingyu Zhao, Kilian M. Pohl, Ehsan Adeli


【32】Model Parallelism With Subnetwork Data Parallelism
标题:利用子网络数据并行主义模型并行主义
链接:https://arxiv.org/abs/2507.09029

作者:ingh, Zafir Khalid, Edouard Oyallon, Eugene Belilovsky
备注:6 pages, 1 figure


【33】Enhancing RLHF with Human Gaze Modeling
标题:通过人体凝视建模增强RL HF
链接:https://arxiv.org/abs/2507.09016

作者:liamov, Ivan Titov, Ilya Pershin


【34】Exploiting Leaderboards for Large-Scale Distribution of Malicious Models
标题:利用排行榜进行恶意模型的大规模分发
链接:https://arxiv.org/abs/2507.08983

作者:Suri, Harsh Chaudhari, Yuefeng Peng, Ali Naseh, Amir Houmansadr, Alina Oprea


【35】Simulating Three-dimensional Turbulence with Physics-informed Neural Networks
标题:利用物理知识的神经网络模拟三维湍流
链接:https://arxiv.org/abs/2507.08972

作者:g, Shyam Sankaran, Panos Stinis, Paris Perdikaris
备注:25 pages, 13 figures, 3 tables


【36】Beyond Scores: Proximal Diffusion Models
标题:超越分数:近端扩散模型
链接:https://arxiv.org/abs/2507.08956

作者:Fang, Mateo Díaz, Sam Buchanan, Jeremias Sulam


【37】The Engineer's Dilemma: A Review of Establishing a Legal Framework for Integrating Machine Learning in Construction by Navigating Precedents and Industry Expectations
标题:工程师的困境:回顾通过借鉴先例和行业预期建立将机器学习集成到建筑中的法律框架
链接:https://arxiv.org/abs/2507.08908

作者:r


【38】Physical Informed Neural Networks for modeling ocean pollutant
标题:用于海洋污染物建模的物理信息神经网络
链接:https://arxiv.org/abs/2507.08834

作者:Battina, Prathamesh Dinesh Joshi, Raj Abhijit Dandekar, Rajat Dandekar, Sreedath Panat
备注:13 pages, 9 figures, 3 tables


【39】View Invariant Learning for Vision-Language Navigation in Continuous Environments
标题:查看连续环境中视觉语言导航的不变学习
链接:https://arxiv.org/abs/2507.08831

作者:an Sun, Xiaoying Xing, Huaiyuan Weng, Chul Min Yeum, Mark Crowley
备注:Under review


【40】Dynamical stability for dense patterns in discrete attractor neural networks
标题:离散吸引子神经网络密集模式的动态稳定性
链接:https://arxiv.org/abs/2507.10383

作者:, Máté Lengyel


【41】MF-GLaM: A multifidelity stochastic emulator using generalized lambda models
标题:MF-GLaM:使用广义Lambda模型的多保真随机模拟器
链接:https://arxiv.org/abs/2507.10303

作者:ukou, X. Zhu, S. Marelli, B. Sudret


【42】Sequence-Model-Guided Measurement Selection for Quantum State Learning
标题:量子状态学习的序列模型引导测量选择
链接:https://arxiv.org/abs/2507.09891

作者:ang, Yan Zhu, Giulio Chiribella, Ya-Dong Wu


【43】Physics-Based Machine Learning Closures and Wall Models for Hypersonic Transition-Continuum Boundary Layer Predictions
标题:基于物理的机器学习闭合和壁模型用于高超音速过渡-连续边界层预测
链接:https://arxiv.org/abs/2507.08986

作者: Nair, Narendra Singh, Marco Panesi, Justin Sirignano, Jonathan F. MacArt


【44】The Bayesian Approach to Continual Learning: An Overview
标题:持续学习的Bayesian方法:概述
链接:https://arxiv.org/abs/2507.08922

作者:el


【45】DiffNMR: Diffusion Models for Nuclear Magnetic Resonance Spectra Elucidation
标题:迪夫核磁共振光谱解析的扩散模型
链接:https://arxiv.org/abs/2507.08854

作者 :Yang, Binglan Wu, Xuwei Liu, Bo Chen, Wei Li, Gen Long, Xin Chen, Mingjun Xiao


其他(44篇)

【1】Quantize-then-Rectify: Efficient VQ-VAE Training
标题:量化然后纠正:高效的VQ-VAE训练
链接:https://arxiv.org/abs/2507.10547

作者:ng, Qihang Rao, Wenzhao Zheng, Jie Zhou, Jiwen Lu


【2】National level satellite-based crop field inventories in smallholder landscapes
标题:国家一级小农景观卫星农田清查
链接:https://arxiv.org/abs/2507.10499

作者:Rufin, Pauline Lucie Hammer, Leon-Friedrich Thomas, Sá Nogueira Lisboa, Natasha Ribeiro, Almeida Sitoe, Patrick Hostert, Patrick Meyfroidt


【3】The Target Polish: A New Approach to Outlier-Resistant Non-Negative Matrix and Tensor Factorization
标题:目标波兰语:抗异常值非负矩阵和张量分解的新方法
链接:https://arxiv.org/abs/2507.10484

作者:l (1), Christophe Geissler (1), George Luta (2) ((1) Data Services, ForvisMazars, Courbevoie, France, (2) Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, USA)
备注:6 pages, 4 figures, International Conference on Robust Statistics 2025, Stresa, Italy


【4】Logic layer Prompt Control Injection (LPCI): A Novel Security Vulnerability Class in Agentic Systems
标题:逻辑层提示控制注入(LCI):统计系统中的一种新型安全漏洞类
链接:https://arxiv.org/abs/2507.10457

作者:ta, Ken Huang, Manish Bhatt, Kamal Ahmed, Muhammad Aziz Ul Haq, Yasir Mehmood


【5】FinTeam: A Multi-Agent Collaborative Intelligence System for Comprehensive Financial Scenarios
标题:FinTeam:针对综合金融场景的多智能体协作智能系统
链接:https://arxiv.org/abs/2507.10448

作者:Wu, Qiushi Wang, Zefei Long, Rong Ye, Zhongtian Lu, Xianyin Zhang, Bingxuan Li, Wei Chen, Liwen Zhang, Zhongyu Wei
备注:NLPCC 2025 Oral


【6】Energy Efficiency in AI for 5G and Beyond: A DeepRx Case Study
标题:5G及其他领域人工智能的能源效率:DeepRx案例研究
链接:https://arxiv.org/abs/2507.10409

作者:th, Ibtissam Labriji


【7】On the Efficiency of Training Robust Decision Trees
标题:鲁棒决策树训练效率的研究
链接:https://arxiv.org/abs/2507.10048

作者:Gerlach, Marie Anastacio, Holger H. Hoos
备注:Presented as a poster at SAIV 2025


【8】Compliance Minimization via Physics-Informed Gaussian Processes
标题:通过基于物理信息的高斯过程最小化合规性
链接:https://arxiv.org/abs/2507.09968

作者:un, Amin Yousefpour, Shirin Hosseinmardi, Ramin Bostanabad


【9】MixLoRA-DSI: Dynamically Expandable Mixture-of-LoRA Experts for Rehearsal-Free Generative Retrieval over Dynamic Corpora
标题:MixLoRA-DSI:可动态扩展的Mixture-of-LoRA专家,用于动态库上的免排练生成式检索
链接:https://arxiv.org/abs/2507.09924

作者:Huynh, Thuy-Trang Vu, Weiqing Wang, Trung Le, Dragan Gašević, Yuan-Fang Li, Thanh-Toan Do


【10】Function Induction and Task Generalization: An Interpretability Study with Off-by-One Addition
标题:功能归纳和任务概括:带有差一添加的可解释性研究
链接:https://arxiv.org/abs/2507.09875

作者:e, Robin Jia, Xiang Ren
备注:Code: this https URL


【11】A Pre-training Framework for Relational Data with Information-theoretic Principles
标题:具有信息论原理的关系数据预训练框架
链接:https://arxiv.org/abs/2507.09837

作者:ong, Zhikai Chen, Mingxuan Ju, Tong Zhao, Neil Shah, Jiliang Tang


【12】Generative Cognitive Diagnosis
标题:生成性认知诊断
链接:https://arxiv.org/abs/2507.09831

作者:i, Qi Liu, Mengxiao Zhu
备注:Preprint; 15 pages, 12 figures


【13】A Scalable and Efficient Signal Integration System for Job Matching
标题:用于职位匹配的可扩展且高效的信号集成系统
链接:https://arxiv.org/abs/2507.09797

作者: Rajat Arora, Xiao Shi, Benjamin Le, Qianqi Shen, Jianqiang Shen, Chengming Jiang, Nikita Zhiltsov, Priya Bannur, Yidan Zhu, Liming Dong, Haichao Wei, Qi Guo, Luke Simon, Liangjie Hong, Wenjing Zhang
备注:KDD2025


【14】Leveraging Distribution Matching to Make Approximate Machine Unlearning Faster
标题:利用分布匹配使机器更快地去学习
链接:https://arxiv.org/abs/2507.09786

作者:bal Khan
备注:10 pages, 4 figures, 4 tables


【15】Knowing When to Quit: Probabilistic Early Exits for Speech Separation
标题:知道何时退出:可能因言语分离而提前退出
链接:https://arxiv.org/abs/2507.09768

作者:kær Olsen. Mads Østergaard, Karl Ulbæk, Søren Føns Nielsen, Rasmus Malik Høegh Lindrup, Bjørn Sand Jensen, Morten Mørup


【16】MB-RIRs: a Synthetic Room Impulse Response Dataset with Frequency-Dependent Absorption Coefficients
标题:MB-RIR:具有频率相关吸收系数的合成房间脉冲响应数据集
链接:https://arxiv.org/abs/2507.09750

作者:ó, Joanna Luberadzka, Umut Sayin, Xavier Serra
备注:Accepted to WASPAA25


【17】Universal Physics Simulation: A Foundational Diffusion Approach
标题:宇宙物理模拟:一种基础扩散方法
链接:https://arxiv.org/abs/2507.09733

作者:amburn
备注:10 pages, 3 figures. Foundational AI model for universal physics simulation using sketch-guided diffusion transformers. Achieves SSIM > 0.8 on electromagnetic field generation without requiring a priori physics encoding


【18】Continental scale habitat modelling with artificial intelligence and multimodal earth observation
标题:利用人工智能和多模式地球观测进行大陆规模栖息地建模
链接:https://arxiv.org/abs/2507.09732

作者:oussi, Stephan Hennekens, Sander Mucher, Stan Los, Wilfried Thuiller


【19】Phase transition of the Sinkhorn-Knopp algorithm
标题 :Sinkhorn-Knopp算法的相变
链接:https://arxiv.org/abs/2507.09711

作者
备注:44 pages, 2 figures


【20】EPT-2 Technical Report
标题:EPT-2技术报告
链接:https://arxiv.org/abs/2507.09703

作者:olinaro, Niall Siegenheim, Niels Poulsen, Jordan Dane Daubinet, Henry Martin, Mark Frey, Kevin Thiart, Alexander Jakob Dautel, Andreas Schlueter, Alex Grigoryev, Bogdan Danciu, Nikoo Ekhtiari, Bas Steunebrink, Leonie Wagner, Marvin Vincent Gabler


【21】Cultivating Pluralism In Algorithmic Monoculture: The Community Alignment Dataset
标题:在单一文化中培养多元化:社区对齐数据集
链接:https://arxiv.org/abs/2507.09650

作者: Zhang, Smitha Milli, Karen Jusko, Jonathan Smith, Brandon Amos, Wassim (Wes)Bouaziz, Manon Revel, Jack Kussman, Lisa Titus, Bhaktipriya Radharapu, Jane Yu, Vidya Sarma, Kris Rose, Maximilian Nickel


【22】Disentanglement and Assessment of Shortcuts in Ophthalmological Retinal Imaging Exams
标题:眼科视网膜成像检查中的解开和捷径评估
链接:https://arxiv.org/abs/2507.09640

作者:rnandes, Tiago Gonçalves, João Matos, Luis Filipe Nakayama, Jaime S. Cardoso
备注:10 pages. Under review


【23】Incentive-Aware Dynamic Resource Allocation under Long-Term Cost Constraints
标题:长期成本约束下激励意识的动态资源配置
链接:https://arxiv.org/abs/2507.09473

作者:Negin Golrezaei, Patrick Jaillet


【24】GreenCrossingAI: A Camera Trap/Computer Vision Pipeline for Environmental Science Research Groups
标题:GreenCrossingAI:环境科学研究小组的摄像机陷阱/计算机视觉管道
链接:https://arxiv.org/abs/2507.09410

作者:scoe, Shawn Johnson, Andrea Osborn, Chandler Campbell, Karen Mager
备注:This is the preprint version of the paper in Practice and Experience in Advanced Research Computing, PEARC25


【25】Supercharging Floorplan Localization with Semantic Rays
标题:基于语义射线的平面图定位
链接:https://arxiv.org/abs/2507.09291

作者:der, Hadar Averbuch-Elor
备注:Accepted at ICCV 2025


【26】ClaritySpeech: Dementia Obfuscation in Speech
标题:ClaritySpeech:言语中的痴呆症混淆
链接:https://arxiv.org/abs/2507.09282

作者:Woszczyk, Ranya Aloufi, Soteris Demetriou
备注:Accepted at Interspeech 2025


【27】Warm Starts Accelerate Generative Modelling
标题:温暖的开始加速生成建模
链接:https://arxiv.org/abs/2507.09212

作者:olz, Richard E. Turner
备注:10 pages, 6 figures


【28】A Study of Value-Aware Eigenoptions
标题:价值感知特征期权研究
链接:https://arxiv.org/abs/2507.09127

作者:otamreddy, Marlos C. Machado
备注:Presented at the RLC Workshop on Inductive Biases in Reinforcement Learning 2025


【29】Continuous-Time Signal Decomposition: An Implicit Neural Generalization of PCA and ICA
标题:连续时间信号分解:PCA和ICA的隐式神经推广
链接:https://arxiv.org/abs/2507.09091

作者: Azmoodeh, Krishna Subramani, Paris Smaragdis
备注:6 pages, 3 figures, 1 table. MLSP 2025


【30】SetupBench: Assessing Software Engineering Agents' Ability to Bootstrap Development Environments
标题:SetupBench:评估软件工程代理引导开发环境的能力
链接:https://arxiv.org/abs/2507.09063

作者:, Jinu Jang, Roshanak Zilouchian Moghaddam


【31】Last Layer Hamiltonian Monte Carlo
标题:最后一层汉密尔顿蒙特卡洛
链接:https://arxiv.org/abs/2507.08905

作者:enga, H. Joe Steinhauer, Göran Falkman, Jonas Andersson, Anders Sjögren
备注:25 pages, 15 figures, 6 tables, currently under submission


【32】GUIDE: Towards Scalable Advising for Research Ideas
标题:指南:迈向可扩展的研究想法咨询
链接:https://arxiv.org/abs/2507.08870

作者:Liu, BingXu Meng, Rui Pan, Jerry Huang, Tong Zhang


【33】Underrepresentation, Label Bias, and Proxies: Towards Data Bias Profiles for the EU AI Act and Beyond
标题:代表性不足、标签偏见和代理:欧盟人工智能法案及其他法案的数据偏见概况
链接:https://arxiv.org/abs/2507.08866

作者:ccon, Giandomenico Cornacchia, Davide Dalle Pezze, Alessandro Fabris, Gian Antonio Susto
备注:Accepted in Expert Systems with Applications


【34】On the under-reaching phenomenon in message-passing neural PDE solvers: revisiting the CFL condition
标题:关于消息传递神经DTE解算器中的不足现象:重温IPL条件
链接:https://arxiv.org/abs/2507.08861

作者:an, Mikel M. Iparraguirre, David Gonzalez, Pedro Martins, Elias Cueto


【35】Can We Predict Your Next Move Without Breaking Your Privacy?
标题:我们可以在不侵犯您隐私的情况下预测您的下一步行动吗?
链接:https://arxiv.org/abs/2507.08843

作者:ni, Sahil Tripathi, Gautam Siddharth Kashyap, Manaswi Kulahara, Mohammad Anas Azeez, Zohaib Hasan Siddiqui, Nipun Joshi, Jiechao Gao
备注:Accepted in the 17th International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2025), scheduled for 25 - 28 August 2025 in Ontario, Canada


【36】LoRA Is Slower Than You Think
标题:LoRA比你想象的要慢
链接:https://arxiv.org/abs/2507.08833

作者:o


【37】An Algorithm for Identifying Interpretable Subgroups With Elevated Treatment Effects
标题:识别具有更高治疗效果的可解释亚组的算法
链接:https://arxiv.org/abs/2507.09494

作者:iu


【38】Optimizing External Sources for Controlled Burning Plasma in Tokamaks with Neural Ordinary Differential Equations
标题:用神经常微方程优化Tokamax受控燃烧等离子体的外部源
链接:https://arxiv.org/abs/2507.09431

作者:u, Weston M. Stacey


【39】Uncovering symmetric and asymmetric species associations from community and environmental data
标题:从群落和环境数据中发现对称和不对称物种关联
链接:https://arxiv.org/abs/2507.09317

作者:oussi, Esther Galbrun, Mickael Hedde, Giovanni Poggiato, Matthias Rohr, Wilfried Thuiller


【40】A Randomized Algorithm for Sparse PCA based on the Basic SDP Relaxation
标题:基于基本SDP松弛的稀疏PCA随机算法
链接:https://arxiv.org/abs/2507.09148

作者:el Pia, Dekun Zhou
备注:29 pages, 2 figures


【41】CoVAE: Consistency Training of Variational Autoencoders
标题:CoVAE:变分自动编码器的一致性训练
链接:https://arxiv.org/abs/2507.09103

作者: Silvestri, Luca Ambrogioni


【42】On the Gradient Domination of the LQG Problem
标题:LQG问题的梯度控制
链接:https://arxiv.org/abs/2507.09026

作者:lah, Leonardo F. Toso, James Anderson


【43】Surprisingly High Redundancy in Electronic Structure Data
标题:电子结构数据的冗余度惊人地高
链接:https://arxiv.org/abs/2507.09001

作者:ssain, Ponkrshnan Thiagarajan, Shashank Pathrudkar, Stephanie Taylor, Abhijeet S. Gangan, Amartya S. Banerjee, Susanta Ghosh


【44】LNN-powered Fluid Antenna Multiple Access
标题:LNN供电的流体天线多路接入
链接:https://arxiv.org/abs/2507.08821

作者:Alvim, Hugerles S. Silva, Ugo S. Dias, Osamah S. Badarneh, Felipe A. P. Figueiredo, Rausley A. A. de Souza


机器翻译由腾讯交互翻译提供,仅供参考

点击“阅读原文”获取带摘要的学术速递

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/184393
 
41 次点击