社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

量化前沿速递:机器学习[20250720]

量化前沿速递 • 1 月前 • 65 次点击  

机器翻译,仅供参考!可使用微信自带翻译功能自行翻译

更多文献获取请关注公众号:量化前沿速递

获取文献链接/翻译/pdf/文章解析请加入知识星球“量化前沿速递

文献汇总

[1] Credit Card Fraud Detection and Credit Risk Analysis: Machine Learning Approaches

信用卡欺诈检测和信用风险分析:机器学习方法

来源:SSRN_20250714

[2] Kernel Learning for Mean Variance Trading Strategies

均值-方差交易策略的核学习

来源:ARXIV_20250716

[3] Forecasting Intraday Volume in Equity Markets with Machine Learning

利用机器学习预测股票市场日内交易量

来源:SSRN_20250716

[4] Causality analysis of electricity market liberalization on electricity price using novel Machine Learning methods

基于新型机器学习方法的电力市场自由化对电价的因果关系分析

来源:ARXIV_20250717

[1] Credit Card Fraud Detection and Credit Risk Analysis: Machine Learning Approaches

标题:信用卡欺诈检测和信用风险分析:机器学习方法

作者:Ankita Anand,Siddhartha Chakrabarty

来源:SSRN_20250714

Abstract : This study explores advancements in techniques for detection of credit card fraud detection and credit risk analysis using machine learning approaches. Two distinct datasets were analyzed: a credit card fraud dataset, addressing extreme class imbalance, and the Australian credit dataset for credit risk prediction. Methods like SMOTE and SMOTE-ENN were employed to tackle data imbalance, while ensemble techniques such as Bagging,......(摘要翻译及全文见知识星球)

Keywords : Fraud Detection, Credit Risk Analysis, SMOTE, Ensemble Learning

[2] Kernel Learning for Mean Variance Trading Strategies

标题:均值-方差交易策略的核学习

作者:Owen Futter, Nicola Muca Cirone, Blanka Horvath

来源:ARXIV_20250716

Abstract : In this article, we develop a kernel based framework for constructing dynamic, pathdependent trading strategies under a mean variance optimisation criterion. Building on the theoretical results of (Muca Cirone and Salvi, 2025), we parameterise trading strategies as functions in a reproducing kernel Hilbert space (RKHS), enabling a flexible and non Markovian approach to optimal portfolio problems. We compare this with the......(摘要翻译及全文见知识星球)

Keywords : 

[3] Forecasting Intraday Volume in Equity Markets with Machine Learning

标题:利用机器学习预测股票市场日内交易量

作者:Mihai Cucuringu,Chao Zhang,Kang Li

来源:SSRN_20250716

Abstract : This study focuses on forecasting intraday trading volumes, a crucial component for portfolio implementation, especially in high-frequency (HF) trading environments. Given the current scarcity of flexible methods in this area, we employ a suite of machine learning (ML) models enriched with numerous HF predictors to enhance the predictability of intraday trading volumes. Our findings reveal that intraday stock trading volume is......(摘要翻译及全文见知识星球)

Keywords : Intraday trading volume, Machine learning, Commonality

[4] Causality analysis of electricity market liberalization on electricity price using novel Machine Learning methods

标题:基于新型机器学习方法的电力市场自由化对电价的因果关系分析

作者:Orr Shahar, Stefan Lessmann, Daniel Traian Pele

来源:ARXIV_20250717

Abstract : Relationships between the energy and the finance markets are increasingly important. Understanding these relationships is vital for policymakers and other stakeholders as the world faces challenges such as satisfying humanity s increasing need for energy and the effects of climate change. In this paper, we investigate the causal effect of electricity market liberalization on the electricity price in the US. By......(摘要翻译及全文见知识星球)

Keywords : 


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/184677
 
65 次点击