社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

机器学习学术速递[8.1]

arXiv每日学术速递 • 3 周前 • 256 次点击  

点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.LG 方向,今日共计114篇


大模型相关(18篇)

【1】SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model
标题:SimuRA:通过具有基于LLM的世界模型的模拟推理架构迈向通用目标导向代理
链接:https://arxiv.org/abs/2507.23773

作者:eng, Jinyu Hou, Yilin Shen, Hongxia Jin, Graham Neubig, Zhiting Hu, Eric Xing


【2】villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
标题:villa-X:增强视觉-语言-动作模型中的潜在动作建模
链接:https://arxiv.org/abs/2507.23682

作者:en, Hangxing Wei, Pushi Zhang, Chuheng Zhang, Kaixin Wang, Yanjiang Guo, Rushuai Yang, Yucen Wang, Xinquan Xiao, Li Zhao, Jianyu Chen, Jiang Bian
备注:Project page: this https URL


【3】From LLMs to Edge: Parameter-Efficient Fine-Tuning on Edge Devices
标题:从LLM到边缘:边缘设备上的参数高效微调
链接:https://arxiv.org/abs/2507.23536

作者:manig, Francesco Corti, Olga Saukh


【4】Policy Learning from Large Vision-Language Model Feedback without Reward Modeling
标题:从大型视觉语言模型反馈中进行政策学习,无需奖励建模
链接:https://arxiv.org/abs/2507.23391

作者:uu, Donghoon Lee, Younghwan Lee, Chang D. Yoo
备注:Accepted to IROS 2025


【5】MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
标题:MUST-RAG:具有检索增强生成的音乐文本问题解答
链接:https://arxiv.org/abs/2507.23334

作者:won, SeungHeon Doh, Juhan Nam
备注:8 pages, 2 figures


【6】DynaSwarm: Dynamically Graph Structure Selection for LLM-based Multi-agent System
标题:DynaSwarm:基于LLM的多智能体系统的动态图结构选择
链接:https://arxiv.org/abs/2507.23261

作者:ong, Yuqing Wu


【7】Evaluating LLMs' Multilingual Capabilities for Bengali: Benchmark Creation and Performance Analysis
标题:评估LLM的孟加拉语多语言能力:基准创建和性能分析
链接:https://arxiv.org/abs/2507.23248

作者:Bhowmik, Tawsif Tashwar Dipto, Md Sazzad Islam, Sheryl Hsu, Tahsin Reasat


【8】Enabling Few-Shot Alzheimer's Disease Diagnosis on Tabular Biomarker Data with LLMs
标题:利用LLM对表格生物标志物数据进行Few-Shot阿尔茨海默病诊断
链接:https://arxiv.org/abs/2507.23227

作者:arney, Shu Yang, Zixuan Wen, Bojian Hou, Duy Duong-Tran, Tianlong Chen, Jason Moore, Marylyn Ritchie, Li Shen


【9】Not Just What, But When: Integrating Irregular Intervals to LLM for Sequential Recommendation
标题:不仅仅是什么,而是何时:将不规则间隔整合到LLM中以进行顺序推荐
链接:https://arxiv.org/abs/2507.23209

作者:u, Takuma Udagawa, Kei Tateno
备注:Accepted by RecSys 2025 short paper track


【10】BAR Conjecture: the Feasibility of Inference Budget-Constrained LLM Services with Authenticity and Reasoning
标题:BAR猜想:具有真实性和推理的推理预算约束LLM服务的可行性
链接:https://arxiv.org/abs/2507.23170

作者:u, Rajat Ghosh, Vaishnavi Bhargava, Debojyoti Dutta, Aryan Singhal


【11】LENS: Learning Ensemble Confidence from Neural States for Multi-LLM Answer Integration
标题:LENS:从神经状态学习增强信心以实现多LLM答案集成
链接:https://arxiv.org/abs/2507.23167

作者:o


【12】KLLM: Fast LLM Inference with K-Means Quantization
标题:KlLM:带K均值量化的快速LLM推理
链接:https://arxiv.org/abs/2507.23035

作者:u, Baijun Zhou, Zhihui Gao, Yuzhe Fu, Qilin Zheng, Yintao He, Hai Li


【13】LLM-Assisted Cheating Detection in Korean Language via Keystrokes
标题:LLM辅助击键检测韩语作弊
链接:https://arxiv.org/abs/2507.22956

作者: Roh, Rajesh Kumar, An Ngo
备注:This paper has 11 pages, 6 figures, 2 tables, and has been accepted for publication at IEEE-IJCB 2025


【14】LLMs Between the Nodes: Community Discovery Beyond Vectors
标题:节点之间的LLM:超越载体的社区发现
链接:https://arxiv.org/abs/2507.22955

作者:al, Apurva Sinha


【15】Automated Label Placement on Maps via Large Language Models
标题:通过大型语言模型在地图上自动放置标签
链接:https://arxiv.org/abs/2507.22952

作者:mer, Jiejun Xu
备注:Workshop on AI for Data Editing (AI4DE) at KDD 2025


【16】ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios
标题:ELMES:评估教育场景中大型语言模型的自动化框架
链接:https://arxiv.org/abs/2507.22947

作者:Wei, Xinyun Wang, Shuzhen Bi, Jian Chen, Ruijia Li, Bo Jiang, Xin Lin, Min Zhang, Yu Song, BingDong Li, Aimin Zhou, Hao Hao


【17】Semantic Convergence: Investigating Shared Representations Across Scaled LLMs
标题:语义融合:调查跨规模LLM的共享表示
链接:https://arxiv.org/abs/2507.22918

作者:n, Sanjana Rathore, Andrew Rufail, Adrian Simon, Daniel Zhang, Soham Dave, Cole Blondin, Kevin Zhu, Sean O'Brien
备注:Submitted to ACL 2025 Student Research Workshop (poster)


【18】A Language Model-Driven Semi-Supervised Ensemble Framework for Illicit Market Detection Across Deep/Dark Web and Social Platforms
标题:语言模型驱动的半监督集成框架,用于跨深网/暗网和社交平台的非法市场检测
链接:https://arxiv.org/abs/2507.22912

作者:danjue, Morteza Rakhshaninejad, Hossein Yazdanjouei, Mohammad Sadegh Khorshidi, Mikko S. Niemela, Fang Chen, Amir H. Gandomi
备注:16 pages, 5 figures, 9 tables


Graph相关(图学习|图神经网络|图优化等)(4篇)

【1】Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
标题:规则2文本:知识图中逻辑规则的自然语言解释
链接:https://arxiv.org/abs/2507.23740

作者:rvani-Mahdavi, Devin Wingfield, Amin Ghasemi, Chengkai Li


【2】GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning
标题:GraphRAG-R1:基于过程约束强化学习的图检索增强生成
链接:https://arxiv.org/abs/2507.23581

作者:Yu, Kuo Zhao, Yuhan Li, Heng Chang, Mingjian Feng, Xiangzhe Jiang, Yufei Sun, Jia Li, Yuzhi Zhang, Jianxin Li, Ziwei Zhang


【3】Scalable Generative Modeling of Weighted Graphs
标题:加权图的可扩展生成建模
链接:https://arxiv.org/abs/2507.23111

作者:illiams, Eric Nalisnick, Andrew Holbrook
备注:25 pages, 5 figures, included appendix. code at this https URL


【4】Unifying Post-hoc Explanations of Knowledge Graph Completions
标题:知识图完备化的统一事后证明
链接:https://arxiv.org/abs/2507.22951

作者:o Lonardi, Samy Badreddine, Tarek R. Besold, Pablo Sanchez Martin


GAN|对抗|攻击|生成相关(4篇)

【1】XSpecMesh: Quality-Preserving Auto-Regressive Mesh Generation Acceleration via Multi-Head Speculative Decoding
标题:XSpecGrid:通过多头推测解码加速质量保护的自回归网格生成
链接:https://arxiv.org/abs/2507.23777

作者:, Yansong Qu, Xinyang Li, Ming Li, Shengchuan Zhang


【2】DivControl: Knowledge Diversion for Controllable Image Generation
标题:DivControl:可控图像生成的知识转移
链接:https://arxiv.org/abs/2507.23620

作者:ie, Fu Feng, Ruixiao Shi, Jing Wang, Yong Rui, Xin Geng


【3】Zero-Shot Document Understanding using Pseudo Table of Contents-Guided Retrieval-Augmented Generation
标题:使用伪内容表引导检索增强生成的Zero-Shot文档理解
链接:https://arxiv.org/abs/2507.23217

作者:ng Jeong, Sangwoo Jo, Byeong Hyun Yoon, Yoonseok Heo, Haedong Jeong, Taehoon Kim


【4】AI paradigm for solving differential equations: first-principles data generation and scale-dilation operator AI solver
标题:用于求解方程的人工智能范式:第一性原则数据生成和规模膨胀操作符人工智能求解器
链接:https://arxiv.org/abs/2507.23141

作者:Gong, Zhiqiang Xie, Xiaowei Jin, Chen Wang, Yanling Qu, Wangmeng Zuo, Hui Li


半/弱/无/有监督|不确定性|主动学习(6篇)

【1】Improving annotator selection in Active Learning using a mood and fatigue-aware Recommender System
标题:使用情绪和疲劳感知推荐系统改进主动学习中的注释者选择
链接:https://arxiv.org/abs/2507.23756

作者:tagua


【2】Deep Learning-based Prediction of Clinical Trial Enrollment with Uncertainty Estimates
标题:基于深度学习的临床试验招募预测和不确定性估计
链接:https://arxiv.org/abs/2507.23607

作者:Do, Antoine Masquelier, Nae Eoun Lee, Jonathan Crowther


【3】Incorporating structural uncertainty in causal decision making
标题:因果决策中的结构性不确定性
链接:https://arxiv.org/abs/2507.23495

作者:aptein
备注:This work is under review at the Journal of Causal Inference


【4】An Interpretable Data-Driven Unsupervised Approach for the Prevention of Forgotten Items
标题:一种可解释的数据驱动无监督方法来防止遗忘物品
链接:https://arxiv.org/abs/2507.23303

作者:ucci, Javier Alejandro Borges Legrottaglie, Francesco Spinnato, Anna Monreale, Riccardo Guidotti


【5】Are Recommenders Self-Aware? Label-Free Recommendation Performance Estimation via Model Uncertainty
标题:推荐人有自知之明吗?通过模型不确定性的无标签推荐性能估计
链接:https://arxiv.org/abs/2507.23208

作者: Ziyi Ye, Guohao Jian, Zhiqiang Guo, Weizhi Ma, Qingyao Ai, Min Zhang


【6】DICOM De-Identification via Hybrid AI and Rule-Based Framework for Scalable, Uncertainty-Aware Redaction
标题:通过混合人工智能和基于规则的框架进行的可扩展、不确定性编辑的DICIC去识别
链接:https://arxiv.org/abs/2507.23736

作者:eo, Nikolas Koutsoubis, Rahul Krish, Ghulam Rasool, Nidhal Bouaynaya, Tony OSullivan, Raj Krish
备注:15 pages, 6 figures,


迁移|Zero/Few/One-Shot|自适应(3篇)

【1】Anomalous Samples for Few-Shot Anomaly Detection
标题:用于Few-Shot异常检测的异常样本
链接:https://arxiv.org/abs/2507.23712

作者:dali, Bartosz Boguslawski, Lucas Drumetz, Vincent Gripon


【2】AGA: An adaptive group alignment framework for structured medical cross-modal representation learning
标题:AGA:用于结构化医学跨模式表示学习的自适应群体对齐框架
链接:https://arxiv.org/abs/2507.23402

作者:un Gong, Jiao Li, Xiaobin Sun


【3】Formal Bayesian Transfer Learning via the Total Risk Prior
标题:通过总风险先验的正式Bayesian转移学习
链接 :https://arxiv.org/abs/2507.23768

作者:coff, Ali Arab, Lisa O. Singh


强化学习(3篇)

【1】OptiGradTrust: Byzantine-Robust Federated Learning with Multi-Feature Gradient Analysis and Reinforcement Learning-Based Trust Weighting
标题:OptGradTrust:具有多特征梯度分析和基于强化学习的信任加权的拜占庭鲁棒联邦学习
链接:https://arxiv.org/abs/2507.23638

作者:Karami, Fatemeh Ghassemi, Hamed Kebriaei, Hamid Azadegan


【2】Hierarchical Message-Passing Policies for Multi-Agent Reinforcement Learning
标题:多智能体强化学习的分层消息传递策略
链接:https://arxiv.org/abs/2507.23604

作者:arzi, Cesare Alippi, Andrea Cini


【3】Generalized Reinforcement Learning for Retriever-Specific Query Rewriter with Unstructured Real-World Documents
标题:具有非结构化现实世界文档的检索特定查询重写器的广义强化学习
链接:https://arxiv.org/abs/2507.23242

作者:ha, DongWook Kim, Taeseung Hahn, Mintae Kim, Youngsub Han, Byoung-Ki Jeon


医学相关(4篇)

【1】SAMSA: Segment Anything Model Enhanced with Spectral Angles for Hyperspectral Interactive Medical Image Segmentation
标题:SAMAS:利用光谱角度增强的分割Anything模型,用于高光谱交互式医学图像分割
链接:https://arxiv.org/abs/2507.23673

作者:dan, Tobias Czempiel, Chi Xu, Daniel S. Elson, Stamatia Giannarou


【2】Explainable artificial intelligence model predicting the risk of all-cause mortality in patients with type 2 diabetes mellitus
标题:预测2型糖尿病患者全因死亡风险的可解释人工智能模型
链接:https://arxiv.org/abs/2507.23491

作者:hinina, Jacopo Sabbatinelli, Anna Rita Bonfigli, Dalila Colombaretti, Angelica Giuliani, Mikhail Krivonosov, Arseniy Trukhanov, Claudio Franceschi, Mikhail Ivanchenko, Fabiola Olivieri


【3】Machine learning and machine learned prediction in chest X-ray images
标题:胸部X射线图像中的机器学习和机器学习预测
链接:https://arxiv.org/abs/2507.23455

作者:Garrett, Abhinav Adhikari, Sarina Gautam, DaShawn Marquis Morris, Chandra Mani Adhikari
备注:8 pages, 7 figures


【4】SigBERT: Combining Narrative Medical Reports and Rough Path Signature Theory for Survival Risk Estimation in Oncology
标题:SigBERT:结合叙述性医疗报告和粗糙路径签名理论进行肿瘤学生存风险估计
链接:https://arxiv.org/abs/2507.22941

作者:hella, Loïc Verlingue, Stéphane Chrétien, Rémi Vaucher, Guillaume Metzler
备注:12 pages, 2 figures, accepted for ECML PKDD 2025


自动驾驶|车辆|车道检测等(2篇)

【1】Vision-Language Fusion for Real-Time Autonomous Driving: Goal-Centered Cross-Attention of Camera, HD-Map, & Waypoints
标题:实时自动驾驶的视觉语言融合:摄像机、高清地图和航点的以目标为中心的交叉注意力
链接:https://arxiv.org/abs/2507.23064

作者:atapati, Trisanth Srinivasan, Murari Ambati
备注:5 pages


【2】Early Goal-Guided Multi-Scale Fusion for Real-Time Vision-Language Driving
标题:用于实时视觉语言驱动的早期目标引导多尺度融合
链接:https://arxiv.org/abs/2507.23042

作者:atapati, Trisanth Srinivasan
备注:6 pages


联邦学习|隐私保护|加密(3篇)

【1】FLOSS: Federated Learning with Opt-Out and Straggler Support
标题:FLOSS:有选择退出和落后者支持的联合学习
链接:https://arxiv.org/abs/2507.23115

作者:oetze, Dahlia J Felten, Jeannie R Albrecht, Rohit Bhattacharya
备注:5 pages


【2】FedCVD++: Communication-Efficient Federated Learning for Cardiovascular Risk Prediction with Parametric and Non-Parametric Model Optimization
标题:FedCV ++:通过参数和非参数模型优化进行心血管风险预测的通信高效联邦学习
链接:https://arxiv.org/abs/2507.22963

作者:n Gaber, Hassan Abd-Eltawab, John Elgallab, Youssif Abuzied, Dineo Mpanya, Turgay Celik, Swarun Kumar, Tamer ElBatt


【3】A Privacy-Preserving Federated Framework with Hybrid Quantum-Enhanced Learning for Financial Fraud Detection
标题:具有混合量子增强学习的隐私保护联邦框架用于金融欺诈检测
链接:https://arxiv.org/abs/2507.22908

作者:Sawaika, Swetang Krishna, Tushar Tomar, Durga Pritam Suggisetti, Aditi Lal, Tanmaya Shrivastav, Nouhaila Innan, Muhammad Shafique
备注:To be published in proceedings of IEEE International Conference on Quantum Computing and Engineering (QCE) 2025


推理|分析|理解|解释(3篇)

【1】Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner
标题:好的学习者思考他们的想法:生成性PRM使大型推理模型更高效数学学习者
链接:https://arxiv.org/abs/2507.23317

作者:ongchuan Mu, Lizi Liao, Yixin Cao, Ming Liu, Bing Qin
备注:33 pages, 3 figures, 19 tables


【2】Multi-Hazard Early Warning Systems for Agriculture with Featural-Temporal Explanations
标题:具有特征-时间特征的农业多危害预警系统
链接:https://arxiv.org/abs/2507.22962

作者:eng, Victor W. Chu
备注:Pre-print v0.8 2025-07-30


【3】Simulation-based inference for Precision Neutrino Physics through Neural Monte Carlo tuning
标题:通过神经蒙特卡罗调整对精确中微子物理进行基于模拟的推理
链接:https://arxiv.org/abs/2507.23297

作者:ov, A. Serafini, D. Dolzhikov, A. Garfagnini, M. Gonchar, M. Grassi, R. Brugnera, V. Cerrone, L. V. D'Auria, R. M. Guizzetti, L. Lastrucci, G. Andronico, V. Antonelli, A. Barresi, D. Basilico, M. Beretta, A. Bergnoli, M. Borghesi, A. Brigatti, R. Bruno, A. Budano, B. Caccianiga, A. Cammi, R. Caruso, D. Chiesa, C. Clementi, C. Coletta, S. Dusini, A. Fabbri, G. Felici, G. Ferrante, M.G. Giammarchi, N. Giudice, N. Guardone, F. Houria, C. Landini, I. Lippi, L. Loi, P. Lombardi, F. Mantovani, S.M. Mari, A. Martini, L. Miramonti, M. Montuschi, M. Nastasi, D. Orestano, F. Ortica, A. Paoloni, L. Pelicci, E. Percalli, F. Petrucci, E. Previtali, G. Ranucci, A.C. Re, B. Ricci, A. Romani, C. Sirignano, M. Sisti, L. Stanco, E. Stanescu Farilla, V. Strati, M.D.C Torri, C. Tuvè, C. Venettacci, G. Verde, L. Votano


检测相关(5篇)

【1】Manifold-regularised Signature Kernel Large-Margin $\ell_p$-SVDD for Multidimensional Time Series Anomaly Detection
链接:https://arxiv.org/abs/2507.23449

作者:ahimzadeh Arashloo


【2】Detection of Adulteration in Coconut Milk using Infrared Spectroscopy and Machine Learning
标题:使用红外光谱和机器学习检测椰奶中的掺假
链接:https://arxiv.org/abs/2507.23418

作者:. Al-Awadhi, Ratnadeep R. Deshmukh


【3】Honey Adulteration Detection using Hyperspectral Imaging and Machine Learning
标题:使用高光谱成像和机器学习检测蜂蜜掺假
链接:https://arxiv.org/abs/2507.23416

作者:. Al-Awadhi, Ratnadeep R. Deshmukh


【4】A Machine Learning Approach for Honey Adulteration Detection using Mineral Element Profiles
标题:使用矿物质元素谱检测蜂蜜掺假的机器学习方法
链接:https://arxiv.org/abs/2507.23412

作者:. Al-Awadhi, Ratnadeep R. Deshmukh


【5】NaN-Propagation: A Novel Method for Sparsity Detection in Black-Box Computational Functions
标题:NaN传播:黑匣子计算函数稀疏性检测的一种新方法
链接:https://arxiv.org/abs/2507.23186

作者:rpe


分类|识别(3篇)

【1】Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
标题:超参数优化对实时图像分类轻量级深度学习模型准确性的影响
链接:https://arxiv.org/abs/2507.23315

作者:mar Rakesh, Soumya Mazumdar, Tapas Samanta, Sarbajit Pal, Amitabha Das
备注:13 pages, 4 figures, 4 tables. Includes ablation study and evaluation on 7 lightweight deep learning models. Code and logs available at this https URL


【2】CNN-based solution for mango classification in agricultural environments
标题:基于CNN的农业环境芒果分类解决方案
链接:https://arxiv.org/abs/2507.23174

作者:íaz Peón, Jorge Torres Gómez, Ariel Fajardo Márquez


【3】Evaluating and Improving the Robustness of Speech Command Recognition Models to Noise and Distribution Shifts
标题:语音命令识别模型对噪声和分布漂移鲁棒性的评估和改进
链接:https://arxiv.org/abs/2507.23128

作者:anger, Lucas Maison
备注:Submitted to ICASSP 2026


优化|敛散性(5篇)

【1】Differentially Private Clipped-SGD: High-Probability Convergence with Arbitrary Clipping Level
标题:差异私人剪辑-新元:任意剪辑水平的高概率收敛
链接:https://arxiv.org/abs/2507.23512

作者:an Khah, Savelii Chezhegov, Shahrokh Farahmand, Samuel Horváth, Eduard Gorbunov
备注 :60 pages


【2】Adjoint-Based Aerodynamic Shape Optimization with a Manifold Constraint Learned by Diffusion Models
标题:扩散模型学习的具有总管约束的基于伴随的气动形状优化
链接:https://arxiv.org/abs/2507.23443

作者:, Emre Oezkaya, Jan Rottmayer, Nicolas R. Gauger, Zebang Shen, Yinyu Ye


【3】Investigating the Invertibility of Multimodal Latent Spaces: Limitations of Optimization-Based Methods
标题:研究多峰潜空间的可逆性:基于优化的方法的局限性
链接:https://arxiv.org/abs/2507.23010

作者:k


【4】Optimal Transport Learning: Balancing Value Optimization and Fairness in Individualized Treatment Rules
标题:最佳交通学习:平衡个性化治疗规则中的价值优化和公平性
链接:https://arxiv.org/abs/2507.23349

作者:i, Xiaoting Ji, Wen Su, Xiaodong Yan, Xingqiu Zhao


【5】On the Complexity of Finding Stationary Points in Nonconvex Simple Bilevel Optimization
标题:非凸简单二层优化中寻找稳定点的复杂性
链接:https://arxiv.org/abs/2507.23155

作者:Cao, Ruichen Jiang, Erfan Yazdandoost Hamedani, Aryan Mokhtari


预测|估计(4篇)

【1】FuseTen: A Generative Model for Daily 10 m Land Surface Temperature Estimation from Spatio-Temporal Satellite Observations
标题:FueTen:根据时空卫星观测估计每日10 m陆地表面温度的生成模型
链接:https://arxiv.org/abs/2507.23154

作者:ouaziz, Adel Hafiane, Raphael Canals, Rachid Nedjai
备注:Accepted in the 2025 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS)


【2】A Foundation Model for Material Fracture Prediction
标题:材料断裂预测的基础模型
链接:https://arxiv.org/abs/2507.23077

作者:rcato, Aleksandra Pachalieva, Ryley G. Hill, Kai Gao, Xiaoyu Wang, Esteban Rougier, Zhou Lei, Vinamra Agrawal, Janel Chua, Qinjun Kang, Jeffrey D. Hyman, Abigail Hunter, Nathan DeBardeleben, Earl Lawrence, Hari Viswanathan, Daniel O'Malley, Javier E. Santos


【3】Prediction of Significant Creatinine Elevation in First ICU Stays with Vancomycin Use: A retrospective study through Catboost
标题:预测首次入住ICU时使用万科霉素后的肌群明显升高:通过Catboost进行的一项回顾性研究
链接:https://arxiv.org/abs/2507.23043

作者:, Li Sun, Shuheng Chen, Yong Si, Minoo Ahmadi, Greg Placencia, Elham Pishgar, Kamiar Alaei, Maryam Pishgar


【4】Planning for Cooler Cities: A Multimodal AI Framework for Predicting and Mitigating Urban Heat Stress through Urban Landscape Transformation
标题:规划更凉爽的城市:通过城市景观改造预测和缓解城市热压力的多模式人工智能框架
链接:https://arxiv.org/abs/2507.23000

作者:i, Xiaojiang Li, Wei Tu, Tianhong Zhao


其他神经网络|深度学习|模型|建模(18篇)

【1】Consensus-Driven Active Model Selection
标题:问题驱动的主动模型选择
链接 :https://arxiv.org/abs/2507.23771

作者:y, Grant Van Horn, Subhransu Maji, Daniel Sheldon, Sara Beery
备注:ICCV 2025 Highlight. 16 pages, 8 figures


【2】SHAP-Guided Regularization in Machine Learning Models
标题:机器学习模型中的SHAP引导正规化
链接:https://arxiv.org/abs/2507.23665

作者:allah


【3】On the Expressiveness of Softmax Attention: A Recurrent Neural Network Perspective
标题:论Softmax注意力的表现力:回归神经网络的视角
链接:https://arxiv.org/abs/2507.23632

作者:ongaras, Eric C. Larson


【4】L-GTA: Latent Generative Modeling for Time Series Augmentation
标题:L-GTA:用于时间序列增强的潜在生成建模
链接:https://arxiv.org/abs/2507.23615

作者:e, Carlos Soares, Vitor Cerqueira, Luis Torgo
备注:None


【5】EB-gMCR: Energy-Based Generative Modeling for Signal Unmixing and Multivariate Curve Resolution
标题:EB-gMCR:用于信号分解和多元曲线分辨率的基于能量的生成建模
链接:https://arxiv.org/abs/2507.23600

作者:hang, Shih-Fang Chen


【6】Hardware-Aware Fine-Tuning of Spiking Q-Networks on the SpiNNaker2 Neuromorphic Platform
标题:SpiNNaker 2神经形态平台上尖峰Q网络的硬件感知微调
链接:https://arxiv.org/abs/2507.23562

作者:fa, Bernhard Vogginger, Christian Mayr
备注:8 pages, 5 figures, 3 tables


【7】Continual Learning with Synthetic Boundary Experience Blending
标题:通过合成边界经验融合进行持续学习
链接:https://arxiv.org/abs/2507.23534

作者:Hsu, Ming-Ching Chang, Wei-Chao Chen


【8】Coflex: Enhancing HW-NAS with Sparse Gaussian Processes for Efficient and Scalable DNN Accelerator Design
标题:Expresslex:利用稀疏高斯过程增强HW-NAS,以实现高效且可扩展的DNN加速器设计
链接:https://arxiv.org/abs/2507.23437

作者:, Tomomasa Yamasaki, Zhehui Wang, Tao Luo, Bo Wang
备注:Accepted to ICCAD 2025 (camera-ready); 9 pages, 5 figures


【9】Scalable and Precise Patch Robustness Certification for Deep Learning Models with Top-k Predictions
标题:具有Top-k预测的深度学习模型的可扩展且精确的补丁鲁棒性认证
链接:https://arxiv.org/abs/2507.23335

作者:u, Haipeng Wang, Zhengyuan Wei, W.K. Chan
备注:accepted by QRS 2025


【10】SequenceLayers: Sequence Processing and Streaming Neural Networks Made Easy
标题:SequenceLayers:简化序列处理和流神经网络
链接:https://arxiv.org/abs/2507.23292

作者:-Ryan, Julian Salazar, Soroosh Mariooryad, David Kao, Daisy Stanton, Eric Battenberg, Matt Shannon, Ron J. Weiss, Robin Scheibler, Jonas Rothfuss, Tom Bagby


【11】Evaluating the Dynamics of Membership Privacy in Deep Learning
标题:评估深度学习中会员隐私的动态
链接:https://arxiv.org/abs/2507.23291

作者:hen, Zhiqi Wang, Nathalie Baracaldo, Swanand Ravindra Kadhe, Lei Yu


【12】A Single Direction of Truth: An Observer Model's Linear Residual Probe Exposes and Steers Contextual Hallucinations
标题:真理的单向:观察者模型的线性剩余探测器揭露并引导情境幻觉
链接:https://arxiv.org/abs/2507.23221

作者:'Neill, Slava Chalnev, Chi Chi Zhao, Max Kirkby, Mudith Jayasekara


【13】Model Directions, Not Words: Mechanistic Topic Models Using Sparse Autoencoders
标题:模型方向,而不是单词:使用稀疏自动编码器的机械主题模型
链接:https://arxiv.org/abs/2507.23220

作者:Zheng, Nicolas Beltran-Velez, Sweta Karlekar, Claudia Shi, Achille Nazaret, Asif Mallik, Amir Feder, David M. Blei


【14】Learning to Prune Branches in Modern Tree-Fruit Orchards
标题:学习在现代树果园修剪树枝
链接:https://arxiv.org/abs/2507.23015

作者:ain, Cindy Grimm, Stefan Lee


【15】Scientific Machine Learning with Kolmogorov-Arnold Networks
标题:基于Kolmogorov-Arnold网络的科学机器学习
链接:https://arxiv.org/abs/2507.22959

作者:Faroughi, Farinaz Mostajeran, Amin Hamed Mashhadzadeh, Shirko Faroughi


【16】Neural Autoregressive Modeling of Brain Aging
标题:大脑衰老的神经自回归建模
链接:https://arxiv.org/abs/2507.22954

作者:siloglu, Wei Peng, Md Tauhidul Islam, Ehsan Adeli
备注:Accepted at Deep Generative Models Workshop @ MICCAI 2025


【17】Scaled Beta Models and Feature Dilution for Dynamic Ticket Pricing
标题:动态票价的Scaled Beta模型和特征稀释
链接:https://arxiv.org/abs/2507.23767

作者:R. Landers
备注:27 pages, 11 figures, 3 tables


【18】DNN-based Methods of Jointly Sensing Number and Directions of Targets via a Green Massive H2AD MIMO Receiver
标题:基于DNN的绿色大规模H2 AD MMO接收机联合感知目标数量和方向的方法
链接:https://arxiv.org/abs/2507.22906

作者: Jiatong Bai, Feilong Zhao, Zuming Xie, Maolin Li, Yan Wang, Feng Shu


其他(29篇)

【1】SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions
标题:警告:通过合成属性替换对煤层气综合进行基准测试
链接:https://arxiv.org/abs/2507.23784

作者:ader, Leander Girrbach, Stephan Alaniz, Zeynep Akata
备注:Accepted at ICCV 2025


【2】DepMicroDiff: Diffusion-Based Dependency-Aware Multimodal Imputation for Microbiome Data
标题:DepMicroDiff:微生物组数据的基于扩散的依赖性感知多模式插补
链接:https://arxiv.org/abs/2507.23676

作者:s Sadia, Qiang Cheng


【3】One-Step Flow Policy Mirror Descent
标题:一步流程政策镜像下降
链接:https://arxiv.org/abs/2507.23675

作者:en, Haitong Ma, Na Li, Kai Wang, Bo Dai


【4】TweakLLM: A Routing Architecture for Dynamic Tailoring of Cached Responses
标题:TweakLLM:一种动态调整缓存响应的路由架构
链接:https://arxiv.org/abs/2507.23674

作者:Taha Cheema, Abeer Aamir, Khawaja Gul Muhammad, Naveed Anwar Bhatti, Ihsan Ayyub Qazi, Zafar Ayyub Qazi
备注:13 pages, 9 figures


【5】Consistent Point Matching
标题:一致的点匹配
链接:https://arxiv.org/abs/2507.23609

作者:a Yerebakan, Gerardo Hermosillo Valadez


【6】Optimised Feature Subset Selection via Simulated Annealing
标题:通过模拟安妮优化特征子集选择
链接:https://arxiv.org/abs/2507.23568

作者:Martínez-García, Álvaro Rubio-García, Samuel Fernández-Lorenzo, Juan José García-Ripoll, Diego Porras
备注:12 pages, 2 figures


【7】Improved Algorithms for Kernel Matrix-Vector Multiplication Under Sparsity Assumptions
标题:稀疏性假设下的核矩阵-载体相乘改进算法
链接:https://arxiv.org/abs/2507.23539

作者:yk, Michael Kapralov, Kshiteej Sheth, Tal Wagner
备注:Published in ICLR 2025


【8】Transparent AI: The Case for Interpretability and Explainability
标题:透明的人工智能:可解释性和可解释性的案例
链接:https://arxiv.org/abs/2507.23535

作者:amachandram, Himanshu Joshi, Judy Zhu, Dhari Gandhi, Lucas Hartman, Ananya Raval


【9】H-RDT: Human Manipulation Enhanced Bimanual Robotic Manipulation
标题:H-RDT:人类操纵增强的双手机器人操纵
链接:https://arxiv.org/abs/2507.23523

作者:i, Lingxuan Wu, Tianwei Lin, Hengkai Tan, Zhizhong Su, Hang Su, Jun Zhu


【10】A Verifier Hierarchy
标题:验证者层次结构
链接:https://arxiv.org/abs/2507.23504

作者:aptein
备注:This paper is primarily relevant to cs.CC, but submitted under this http URL due to lack of endorsement. The paper is under review at "Information and Communication"


【11】Directional Ensemble Aggregation for Actor-Critics
标题:演员-评论家的定向包围聚合
链接:https://arxiv.org/abs/2507.23501

作者:erge, Yi-Shan Wu, Bahareh Tasdighi, Melih Kandemir


【12】Merging Memory and Space: A Spatiotemporal State Space Neural Operator
标题:融合记忆和空间的时空状态空间神经算子
链接:https://arxiv.org/abs/2507.23428

作者: Koren, Samuel Lanthaler


【13】Causal Explanation of Concept Drift -- A Truly Actionable Approach
标题:概念漂移的因果解释--一种真正可行的方法
链接:https://arxiv.org/abs/2507.23389

作者:nick, Kathrin Lammers, Barbara Hammer, Valerie Vaquet, Fabian Hinder
备注:This manuscript is accepted to be presented at the TempXAI workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2025)


【14】SWE-Exp: Experience-Driven Software Issue Resolution
标题:SWE-Exp:体验驱动的软件问题解决
链接:https://arxiv.org/abs/2507.23361

作者:n, Shaoxin Lin, Xiaodong Gu, Yuling Shi, Heng Lian, Longfei Yun, Dong Chen, Weiguo Sun, Lin Cao, Qianxiang Wang
备注:Our code and data are available at this https URL


【15】SWE-Debate: Competitive Multi-Agent Debate for Software Issue Resolution
标题:SWE辩论:软件问题解决的竞争性多代理辩论
链接:https://arxiv.org/abs/2507.23348

作者:uling Shi, Shaoxin Lin, Xiaodong Gu, Heng Lian, Xin Wang, Yantao Jia, Tao Huang, Qianxiang Wang
备注:Our code and data are available at this https URL


【16】Designing Dynamic Pricing for Bike-sharing Systems via Differentiable Agent-based Simulation
标题:基于微分Agent的共享单车动态定价仿真设计
链接:https://arxiv.org/abs/2507.23344

作者:itomi, Fumiyasu Makinoshima, Fumiya Makihara, Eigo Segawa


【17】Efficient Machine Unlearning via Influence Approximation
标题:通过影响力逼近实现高效的机器去学习
链接:https://arxiv.org/abs/2507.23257

作者:u, Chenwang Wu, Defu Lian, Enhong Chen
备注:12 pages, 4 figures


【18】Geak: Introducing Triton Kernel AI Agent & Evaluation Benchmarks
标题:Geak:引入Triton核心AI代理和评估基准
链接:https://arxiv.org/abs/2507.23194

作者:Wang, Vinay Joshi, Saptarshi Majumder, Xu Chao, Bin Ding, Ziqiong Liu, Pratik Prabhanjan Brahma, Dong Li, Zicheng Liu, Emad Barsoum


【19】Observational Multiplicity
标题:观察多重性
链接:https://arxiv.org/abs/2507.23136

作者:ge, Deanna Needell, Berk Ustun


【20】RASL: Retrieval Augmented Schema Linking for Massive Database Text-to-SQL
标题:RASL:大规模数据库文本到SQL的检索增强模式链接
链接:https://arxiv.org/abs/2507.23104

作者:ben, Aitzaz Ahmad, Stephen Lau


【21】On the Sustainability of AI Inferences in the Edge
标题:论边缘人工智能推理的可持续性
链接:https://arxiv.org/abs/2507.23093

作者:bhani, Md. Monzurul Amin Ifath, Tushar Sharma, Israat Haque
备注:14 pages, 8 figures, 6 tables, in preparation for journal submission


【22】Locally Differentially Private Thresholding Bandits
标题:局部差异性私有持票土匪
链接:https://arxiv.org/abs/2507.23073

作者:Barbara, Joseph Lazzaro, Ciara Pike-Burke
备注:18th European Workshop on Reinforcement Learning (EWRL 2025)


【23】Linking Actor Behavior to Process Performance Over Time
标题:将演员行为与随着时间的推移的过程绩效联系起来
链接:https://arxiv.org/abs/2507.23037

作者:eribaux, Rafael Oyamada, Johannes De Smedt, Zahra Dasht Bozorgi, Artem Polyvyanyy, Jochen De Weerdt
备注:Accepted for presentation at the 5th Workshop on Change, Drift, and Dynamics of Organizational Processes (ProDy), BPM 2025


【24】Data Readiness for Scientific AI at Scale
标题:大规模科学人工智能的数据准备
链接:https://arxiv.org/abs/2507.23018

作者:ewer, Patrick Widener, Valentine Anantharaj, Feiyi Wang, Tom Beck, Arjun Shankar, Sarp Oral
备注:10 pages, 1 figure, 2 tables


【25】Stop Evaluating AI with Human Tests, Develop Principled, AI-specific Tests instead
标题:停止通过人体测试评估人工智能,转而开发有原则的、特定于人工智能的测试
链接:https://arxiv.org/abs/2507.23009

作者: Florian E. Dorner, Olawale Salaudeen, Augustin Kelava, Samira Samadi


【26】CHECK-MAT: Checking Hand-Written Mathematical Answers for the Russian Unified State Exam
标题:CLARK-MAT:检查俄罗斯统一国家考试的手写数学答案
链接:https://arxiv.org/abs/2507.22958

作者:rulev
备注:15 pages, 3 figures, 10 tables. Code is available at: this https URL


【27】Extended Factorization Machine Annealing for Rapid Discovery of Transparent Conducting Materials
标题:扩展因子分解机退变快速发现透明导电材料
链接:https://arxiv.org/abs/2507.23160

作者:akino, Tatsuya Goto, Yoshinori Suga
备注:12pages, 6figures


【28】A Smoothing Newton Method for Rank-one Matrix Recovery
标题:一级矩阵恢复的光滑牛顿法
链接:https://arxiv.org/abs/2507.23017

作者:nu, Gabriel Abreu
备注:12 pages, 4 figures


【29】Typing Tensor Calculus in 2-Categories (I)
标题:输入2类张量微积分(I)
链接:https://arxiv.org/abs/1908.01212

作者:ita Ahmadi
备注:28 pages; extended introduction, more explanation


机器翻译由腾讯交互翻译提供,仅供参考

点击“阅读原文”获取带摘要的学术速递

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/185080
 
256 次点击