社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

机器学习AI算法工程 • 6 年前 • 426 次点击  


向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程  公众号: datayx








Where else but Quora can a physicist help a chef with a math problem and get cooking tips in return? Quora is a place to gain and share knowledge—about anything. It’s a platform to ask questions and connect with people who contribute unique insights and quality answers. This empowers people to learn from each other and to better understand the world.


Over 100 million people visit Quora every month, so it's no surprise that many people ask similarly worded questions. Multiple questions with the same intent can cause seekers to spend more time finding the best answer to their question, and make writers feel they need to answer multiple versions of the same question. Quora values canonical questions because they provide a better experience to active seekers and writers, and offer more value to both of these groups in the long term.


Currently, Quora uses a Random Forest model to identify duplicate questions. In this competition, Kagglers are challenged to tackle this natural language processing problem by applying advanced techniques to classify whether question pairs are duplicates or not. Doing so will make it easier to find high quality answers to questions resulting in an improved experience for Quora writers, seekers, and readers.


https://www.kaggle.com/c/quora-question-pairs



完整代码、ppt下载地址:

关注微信公众号 datayx  然后回复 文本匹配  即可获取。



































阅读过本文的人还看了以下:


《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码


2016-2018年机器学习大赛TOP开源作品汇总


看完这两套吴恩达课程笔记,为你省下上万元培训费


Stacking:Catboost、Xgboost、LightGBM、Adaboost、RF etc


全球AI挑战-场景分类的比赛源码(多模型融合)



不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  



今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/ikI75t8gvX
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/26952
 
426 次点击