社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

谷歌免费GPU,在线Jupyter notebook深度学习环境

机器学习AI算法工程 • 6 年前 • 863 次点击  


向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程  公众号: datayx



Google Colab简介

Google Colaboratory是谷歌开放的一款研究工具,主要用于机器学习的开发和研究。这款工具现在可以免费使用,但是不是永久免费暂时还不确定。Google Colab最大的好处是给广大的AI开发者提供了免费的GPU使用!GPU型号是Tesla K80!你可以在上面轻松地跑例如:Keras、Tensorflow、Pytorch等框架。



官方教程

新手指引:https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d
常见问题:https://research.google.com/colaboratory/faq.html



官方给出的新手指引当中已经给出了前期配置、常见软件和库的安装等方法。大家凭借官方教程可以基本入门Colab,但如果想更加自如地在Colab上跑通自己的代码,可能还需要更多的学习。


我写的这篇教程结合了官方给的资料和网上其他小伙伴的经验,希望对刚接触Colab的童鞋有所帮助: )(我自己使用Colab的时间其实不长,文中如果有错误的地方还望大家指正~)


基本操作

认识Google Colab

依赖平台:Google Drive

Colab需要从Google Drive(谷歌云盘)进入。为了方便整理,我先在Google Drive中创建了一个新文件夹"Colab"




创建新文件夹"Colab"

然后,我们在"Colab"文件夹中新建一个Colab项目,如图所示:



新建Colab项目

注意:首次创建Colab项目需要点击“关联更多应用”,添加“Colaboratory”应用。

创建完项目之后我们就可以进入Colab的主界面了。

现在,我们就可以在代码框中输入一些代码。这里注意,如果我们直接输入代码,系统会当作是Python代码执行。例如我们输入:


a = 1
print(a)


运行之后输出框中会打印出"1"。

而如果我想执行系统命令,需要在命令前加感叹号!。例如我们输入:

!ls



执行后输出框中会显示当前目录下的所有文件夹。是不是很像Linux下的命令行操作哈哈!



其实我们在Colab中连接的云端的那台虚拟机正是使用的Ubuntu操作系统,我们可以将自己在Colab中的一切操作看作是在用命令行控制云端的那台Ubuntu虚拟机。你可以用它来直接跑代码,也可以使用一些系统命令(我们后面要安装第三方软件都需要借助一系列的系统命令)。看到这有没有感觉自己瞬间多了一台电脑~



前期配置

1. 修改笔记本环境

我们每新建一个Colab项目,先对笔记本环境进行配置,选择是Python2还是Python3,是否使用GPU。(其中Python2是2.7版本,Python3是3.6版本)




笔记本设置

修改完后点击保存。




2. 安装必要的包和软件

在代码段中输入以下代码:



运行代码,运行中会提示输入验证码,点击程序给出的网址进行验证即可。


3. 挂载Google Drive

其实完成前面的操作我们就可以在Colab中敲写代码或者输入一些系统命令了,但是我们现在连接的虚拟机是和Google Drive脱离的,也就是说我们跑的程序无法使用谷歌云盘里的文件,这就非常受限制了。所以我们一般需要将谷歌云盘看作是虚拟机中的一个硬盘挂载,这样我们就可以使用虚拟机轻松访问谷歌云盘。


挂载Google Drive代码:

!mkdir -p drive
!google-drive-ocamlfuse drive

挂载完后在虚拟机中会多出一个文件夹"drive",我们可以用!ls命令查看。



安装深度学习平台

在官方教程中已经有Keras、Tensorflow、Pytorch的安装方法,我平时使用Pytorch比较多,所以这里只给出Pytorch的安装代码。

!pip install http://download.pytorch.org/whl/cu80/torch-0.3.1-cp36-cp36m-linux_x86_64.whl torchvision

我这里安装的是0.3.1的版本,大家可以根据自己的需要调整版号。

安装完后输入import pytorch没有报错,基本上就是安装成功了。

到此,我们介绍完了Colab中的基本操作,我们现在可以在Colab中跑一些简单的代码了。但这显然还不够,下面我将介绍一些进阶操作以及举例说明如何在Colab中跑自己写好的.py文件。



进阶操作

更改工作目录

在Colab中cd命令是无效的,切换工作目录使用chdir函数。

import os
os.chdir("drive")

执行以上代码,当前工作目录会进入到drive文件夹下。我们再使用!ls命令会发现系统输出的是drive文件夹下的目录。

回到上级目录:os.chdir('../')





访问AI图谱 技术分享社区 

https://loveai.tech






安装Java8

有的第三方Python库可能需要依赖Java或是其他软件才能运行,有了前面的介绍,我们就可以在Colab中安装Java8了,其他复杂的软件安装也可以参考Java8的安装步骤进行安装。



0. Colab前期配置(前面已经说了,这里不重复说啦)
1.  添加ppa
!add-apt-repository ppa:webupd8team/java --yes
!apt-get update

注意--yes这个小操作很关键,如果我们不在那句代码中加入后缀--yes,系统会给出这样的信息:




程序会卡在这个地方,让你输入回车继续安装或者Ctrl-C结束安装。但是Colab中不支持用户在程序运行过程中与命令行进行交互,我们没办法将回车键输给命令行,所以需要提前在代码中就告诉系统我们在后面的选择中选'yes'。


这个小技巧在Colab中会被经常用到。



2. 安装oracle-java-installer
!echo oracle-java8-installer shared/accepted-oracle-license-v1-1 select true | /usr/bin/debconf-set-selections
!apt-get install oracle-java8-installer

和步骤一中同样的道理,第一句代码是为了提前告诉系统我们同意 oracle 的服务条款,否则安装程序会因为无法弹出协议窗口而自动停止。

到这里我们就正式地开始下载并安装Java了,Colab下载各种东西的速度都很快,不用担心网速的问题~


3. 设置系统默认jdk
!update-java-alternatives -s java-8-oracle
4. 测试Java是否安装成功
!java -version
!javac -version

系统正确输出Java版本即表示安装成功。


5. 查看Java的安装路径

Java是安装完了,但是我们有时候还需要在代码中声明Java的安装路径才能调用Java。如何找到Java的安装路径呢?大家可以参考下面这篇文章:
https://www.cnblogs.com/oxspirt/p/6294754.html

例如我查找到的安装路径是:/usr/lib/jvm/java-8-oracle/jre/bin/java

运行自己的代码


好了,各种准备工作都做好了,我们如何在Colab上直接运行自己写好的代码呢?其实很简单,就跟在自己电脑上一样,使用命令!python XXX.py就可以了!详细步骤如下:


1. 将.py文件和其它必要的文件上传到Google Drive

上传速度很快,不用担心网速问题~

2. 将工作目录切换到.py文件所在目录
import os
os.chdir('drive/Colab/Your project folder')

不放心的话切换完之后用!ls命令看一下是不是到了指定目录下。

3. 运行代码

!python XXX.py

4. 注意事项
  • Linux系统下文件路径使用'/'而不是'\'

  • 如果需要记得在代码里声明第三方软件或库的路径,例如我在使用Stanford Parser工具的时候,声明模型和Java的路径:

# 添加stanford环境变量  (content是系统根目录下的一个文件夹)
os.environ['STANFORD_PARSER'] = '/content/drive/Stanford_NLP/jars/stanford-parser.jar'
os.environ['STANFORD_MODELS'] = '/content/drive/Stanford_NLP/jars/stanford-parser-3.9.1-models.jar'
# 添加Java环境变量
os.environ['JAVAHOME'] = "/usr/lib/jvm/java-8-oracle/jre/bin/java"



总结

  1. 可以把Colab看成是一台带有GPU的Ubuntu虚拟机,只不过我们只能用命令行的方式操作它。你可以选择执行系统命令,亦或是直接编写运行python代码。

  2. 挂载完Google Drive,会在虚拟机里生成一个drive文件夹,直接将Google Drive当成是一块硬盘即可。访问drive文件夹里的文件,就是在访问你的Google Drive里的文件。

  3. Colab最多连续使用12小时,超过时间系统会强制掐断正在运行的程序并收回占用的虚拟机。(好像再次连接到虚拟机后,虚拟机是被清空的状态,需要重新配置和安装库等等)

  4. 请使用科学上网方式。

好了,Google Colab的使用方法就先介绍到这里了,笔者也是刚接触不久,发现国内介绍Colab的博文还是少了点,所以写下了这篇教程与大家分享。文中若有问题之处,还请大家多多包涵,可以在评论区指出我的错误,互相学习: )

参考资料

官方教程
官方FAQ
https://www.cnblogs.com/smiler/p/6939913.html
https://www.cnblogs.com/oxspirt/p/6294754.html







阅读过本文的人还看了以下:


分享《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码


《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码


《深度学习之pytorch》pdf+附书源码


将机器学习模型部署为REST API


FashionAI服装属性标签图像识别Top1-5方案分享


重要开源!CNN-RNN-CTC 实现手写汉字识别


yolo3 检测出图像中的不规则汉字


同样是机器学习算法工程师,你的面试为什么过不了?


前海征信大数据算法:风险概率预测


【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类


VGG16迁移学习,实现医学图像识别分类工程项目


特征工程(一)


特征工程(二) :文本数据的展开、过滤和分块


特征工程(三):特征缩放,从词袋到 TF-IDF


特征工程(四): 类别特征


特征工程(五): PCA 降维


特征工程(六): 非线性特征提取和模型堆叠


特征工程(七):图像特征提取和深度学习


如何利用全新的决策树集成级联结构gcForest做特征工程并打分?


Machine Learning Yearning 中文翻译稿


蚂蚁金服2018秋招-算法工程师(共四面)通过


全球AI挑战-场景分类的比赛源码(多模型融合)


斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)


python+flask搭建CNN在线识别手写中文网站


中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程


不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

长按图片,识别二维码,点关注


访问AI图谱  

https://loveai.tech





Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/29930
 
863 次点击