社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

这些珍藏的优质 Python 播客值得推荐

编程派 • 6 年前 • 516 次点击  

前段时间分享了一篇介绍Python英文播客的文章:《一边练英语听力,一边学 Python》,在头条号和公众号里的反馈数据还不错,说明有很多人对听播客学技术的方式是按兴趣的。

今天和大家分享一篇介绍更为详细的介绍文章,更新了Python播客列表,同时加入了软件开发和数据科学方面播客介绍,希望能够帮助大家。

英文  | Best Python Podcasts[0]

译者  | 豌豆花下猫@Python猫公众号

Python 社区里有很多免费或低成本的学习资源,对新手与有经验的开发者来说,是一大福音。这些优秀的资源就包括很多定期更新的 Python 播客节目。

本文介绍了一些活跃的、与 Python 或软件工程相关的、高质量的播客。

Python 相关的播客

这些播客的运营者都是 Python 开发者,他们关注的都是我们领域内很重要的话题。每个播客系列都有很长的历史列表,有的节目录于几年前,因此我们有丰富的材料可以聆听与学习。

播客:Talk Python to Me

  • Talk Python to Me[1] 专注于 Python 开发者和组织,每期节目会邀请不同的嘉宾来谈论 ta 的工作

  • Podcast.__init__[2] 提供有关 Python 的故事,以及“与那些让它变得更棒的人们的访谈”

  • Python Bytes[3] 是来自“Talk Python to Me”和“Test and Code Podcast”创作者的新播客

  • Test and Code Podcast[4] 侧重于测试与相关主题,如模拟(mock)和代码度量

  • Philip Guo 教授有一个名为 PG Podcast[5] 的视频播客,基本是关于 Python 主题的

  • Import This[6] 是 Kenneth Reitz 和 Alex Gaynor 间歇更新的播客,对有影响力的 Python 社区成员进行深度的采访

K神主持的播客

最喜欢的播客节目

以下是我从各大播客中收集的最喜欢的一些节目,听听这些内容,你可以感受到其余播客节目的风格。

  • SQLAlchemy and data access in Python[7] 让我理解了对象关系映射库 SQLAlchemy 的知识及其演变过程。这期节目采访了 SQLAlchemy 的作者,主持人 Michael Kennedy 根据他对 SQLAlchemy 的深入研究和使用经验提出了很多问题。

  • Python past, present, and future with Guido van Rossum[8] 涵盖了 Python 的历史、Guido 创造并持续三十年来发展这门语言的动机。有趣的事实:当播客主持人迈克尔·肯尼迪向我征询话题时,我贡献了一个问题,即 Python 的开源是否是促使它成功的原因?

  • Deploying Python Web Applications[9] 剧透预警:这是我在 Talk Python to Me 上的一期节目,介绍了 Python Web 应用程序部署的工作原理。

  • Python Bytes 栏目在第 39 集中广泛地讨论了 object-relational mappers (ORMs)[10] ,其中不少讨论是基于 Full Stack Python 上的文章。谢谢大家对我们提出的反馈与建议。

  • Python at Netflix[11] 出自 Talk Python to Me,通过一个非常棒的视角,介绍了 Python 是怎么运用于这家最大的网络流媒体公司,以及如何适应它们的多语言组织。

  • 另一个很棒的 Talk Python to Me 节目,Python in Finance[12],介绍了 Python 在金融行业中的广泛用途:股票交易、定量分析和数据分析。如果你想知道像对冲基金这样的不透明的私营企业是如何利用 Python 赚取(大量)钱财的,一定要听听这个。

节目:Python at Netflix

通用软件开发的播客

这些播客主要探讨的是软件开发相关的主题,但经常也会涉及 Python 的内容。聆听和学习这些播客,你将会成为更加优秀的软件开发者。

  • Software Engineering Daily[13] 令人难以置信的是每天邀请不同的开发者嘉宾,谈论话题非常广泛,与开发相关。

  • All things Git[14] 教人如何使用、构建及将 Git 用于工作,每两周一更。

  • CodeNewbie[15] 采访新入行的开发者,谈论为什么他们要从事编程工作,以及他们的工作内容。该栏目也会采访一些经验丰富的、打造了知名项目的开发者。

  • Developer on Fire[16] 采访程序员、架构师和测试人员,讲述他们成功、失败和卓越的故事。

  • Command_line Heroes[17] 涵盖操作系统级的主题以及 DevOps。

  • Embedded.fm[18] 涵盖嵌入式系统和硬件黑客攻击。

  • The Changelog[19] 周更播客,关于常规软件开发的问题。

  • Full Stack Radio[20] 虽与 Full Stack Python 无关,但值得关注!

  • Exponent[21] 不是一个软件开发的播客,但它以深入的方式揭示了企业的战略和技术,使我能够更好地理解企业在构建和发布软件时所做出的决策。我听了每一集(以 1.5 倍速),非常推荐每周花 45 到 60 分钟,听 Ben Thompson 和 James Allworth 深入讨论一个主题。

  • Test Talks[22] 每周考察一个软件测试的主题,通常会特邀一位钻研该领域的嘉宾。

  • The Cloudcast[23] 聚焦于云计算和 DevOps 的相关主题。

数据科学与数据分析的播客

Python不仅是数据科学社区的核心编程语言,而且几乎在每个使用数据分析的组织中都发挥着重要作用。以下播客广泛地涵盖数据科学,并经常涉及到 Python 生态系统中特定的工具。

播客:DataFramed

  • DataFramed[24] 是一个数据科学播客,内容涵盖 Python 标准库,以及数据分析者感兴趣的其它内容。

  • Data Skeptic[25] 涵盖数据科学、统计、机器学习、人工智能,以及“科学怀疑论”(scientific skepticism)等内容。

  • Data stories[26] 是个关于数据可视化的播客。

  • Partially Derivative[27] 是一个关于机器学习、人工智能和数据行业的播客,在 2017 年底已停播,节目列表包含了大量的内容。

References

[0] Best Python Podcasts: https://www.fullstackpython.com/best-python-podcasts.html
[1] Talk Python to Me: https://talkpython.fm
[2] Podcast.__init__: http://podcastinit.com
[3] Python Bytes: https://pythonbytes.fm
[4] Test and Code Podcast: http://pythontesting.net/test-podcast
[5] PG Podcast: http://pgbovine.net/PG-Podcast.htm
[6] Import This: https://www.kennethreitz.org/import-this
[7] SQLAlchemy and data access in Python: https://talkpython.fm/episodes/show/5/sqlalchemy-and-data-access-in-python
[8] Python past, present, and future with Guido van Rossum: https://talkpython.fm/episodes/show/100/python-past-present-and-future-with-guido-van-rossum
[9] Deploying Python Web Applications: https://talkpython.fm/episodes/show/26/deploying-python-web-applications-updated
[10] object-relational mappers (ORMs): https://www.fullstackpython.com/object-relational-mappers-orms.html
[11] Python at Netflix: https://talkpython.fm/episodes/show/16/python-at-netflix
[12] Python in Finance: https://talkpython.fm/episodes/show/120/python-in-finance
[13] Software Engineering Daily: https://softwareengineeringdaily.com
[14] All things Git: https://www.allthingsgit.com
[15] CodeNewbie: https://www.codenewbie.org/podcast
[16] Developer on Fire: http://developeronfire.com
[17] Command_line Heroes: https://www.redhat.com/en/command-line-heroes
[18] Embedded.fm: http://embedded.fm
[19] The Changelog: https://changelog.com
[20] Full Stack Radio: http://www.fullstackradio.com
[21] Exponent: http://exponent.fm
[22] Test Talks: https://joecolantonio.com/testtalks
[23] The Cloudcast: http://www.thecloudcast.net
[24] DataFramed: https://www.datacamp.com/community/podcast
[25] Data Skeptic: https://www.dataskeptic.com
[26] Data stories: http://datastori.es
[27] Partially Derivative: http://partiallyderivative.com

回复下方「关键词」,获取优质资源


回复关键词「 pybook03」,立即获取主页君与小伙伴一起翻译的《Think Python 2e》电子版

回复关键词「pybooks02」,立即获取 O'Reilly 出版社推出的免费 Python 相关电子书合集

回复关键词「书单02」,立即获取主页君整理的 10 本 Python 入门书的电子版



印度小伙写了套深度学习教程,Github上星标已经5000+

上百个数据文件合并,只能手动复制粘贴?教你一招十秒搞定!

一个提升图像识别准确率的精妙技巧

一文读懂:从 Python 打包到 CLI 工具

如何使用 Python 进行时间序列预测?

美亚Kindle排名第一的Python 3入门书,火遍了整个编程圈

十分钟搭建私有 Jupyter Notebook 服务器

使用 Python 制作属于自己的 PDF 电子书

12步轻松搞定Python装饰器

200 行代码实现 2048 游戏

题图:pexels,CC0 授权。

点击阅读原文,查看更多 Python 教程和资源。


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/31783
 
516 次点击