社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

干货 | 10 行 Python 代码创建可视化地图

36大数据 • 7 年前 • 1032 次点击  
import vincent
world_countries = r'world-countries.json'world = vincent.Map(width=1200, height=1000)
world.geo_data(projection='winkel3', scale=200, world=world_countries)
world.to_json(path)

当我开始建造Vincent时, 我的一个目的就是使得地图的建造尽可能合理化. 有一些很棒的python地图库-参见Basemap 和 Kartograph能让地图更有意思. 我强烈推荐这两个工具, 因为他们都很好用而且很强大. 我想有更简单一些的工具,能依靠Vega的力量并且允许简单的语法点到geoJSON文件,详细描述一个投影和大小/比列,最后输出地图.


例如, 将地图数据分层来建立更复杂的地图:

vis = vincent.Map(width=1000, height=800)#Add the US county data and a new line colorvis.geo_data(projection='albersUsa', scale=1000, counties=county_geo)
vis + ('2B4ECF', 'marks', 0, 'properties', 'enter', 'stroke', 'value')#Add the state data, remove the fill, write Vega spec output to JSONvis.geo_data(states=state_geo)
vis - ('fill', 'marks', 1, 'properties', 'enter')
vis.to_json(path)

加之,等值线地图需绑定Pandas数据,需要数据列直接映射到地图要素.假设有一个从geoJSON到列数据的1:1映射,它的语法是非常简单的:

#'merged' is the Pandas DataFramevis = vincent.Map(width=1000, height=800)
vis.tabular_data(merged, columns=['FIPS_Code', 'Unemployment_rate_2011']) 
vis.geo_data(projection='albersUsa', scale=1000, bind_data='data.id', counties=county_geo)
vis + (["#f5f5f5","#000045"], 'scales', 0, 'range')
vis.to_json(path)

我们的数据并非没有争议无需改造——用户需要确保 geoJSON 键与熊猫数据框架之间具有1:1的映射。下面就是之前实例所需的简明的数据框架映射:我们的国家信息是一个列有FIPS 码、国家名称、以及经济信息(列名省略)的 CSV 文件:

00000,US,United States,154505871,140674478,13831393,9,50502,10001000,AL,Alabama,2190519,1993977,196542,9,41427,10001001,AL,Autauga County,25930,23854,2076,8,48863,117.901003,AL,Baldwin County,85407,78491,6916,8.1,50144,12101005,AL,Barbour County,9761,8651,1110,11.4,30117,72.7

在 geoJSON 中,我们的国家形状是以 FIPS 码为id 的(感谢 fork 自 Trifacta 的相关信息)。为了简便,实际形状已经做了简略,在示例数据可以找到完整的数据集:

{"type":"FeatureCollection","features":[
{"type":"Feature","id":"1001","properties":{"name":"Autauga"}
{"type":"Feature","id":"1003","properties":{"name":"Baldwin"}
{"type":"Feature","id":"1005","properties":{"name":"Barbour"}
{"type":"Feature","id":"1007","properties":{"name":"Bibb"}
{"type":"Feature","id":"1009","properties":{"name":"Blount"}
{"type":"Feature","id":"1011","properties":{"name":"Bullock"}
{"type":"Feature","id":"1013","properties":{"name":"Butler"}
{"type":"Feature","id":"1015","properties":{"name":"Calhoun"}
{"type":"Feature","id":"1017","properties":{"name":"Chambers"}
{"type":"Feature","id":"1019","properties":{"name":"Cherokee"}

我们需要匹配 FIPS 码,确保匹配正确,否则 Vega 无法正确的压缩数据:

import jsonimport pandas as pd#Map the county codes we have in our geometry to those in the#county_data file, which contains additional rows we don't needwith open(county_geo, 'r') as f:
    get_id = json.load(f)#Grab the FIPS codes and load them into a dataframecounty_codes = [x['id'] for x in get_id['features']]
county_df = pd.DataFrame({'FIPS_Code': county_codes}, dtype=str)#Read into Dataframe, cast to string for consistencydf = pd.read_csv(county_data, na_values=[' '])
df['FIPS_Code'] = df['FIPS_Code'].astype(str)#Perform an inner join, pad NA's with data from nearest countymerged = pd.merge(df, county_df, on='FIPS_Code', how='inner')
merged = merged.fillna(method='pad')

>>>merged.head()
      FIPS_Code State       Area_name  Civilian_labor_force_2011  Employed_2011  \    0      1001    AL  Autauga County                      25930          23854   
    1      1003    AL  Baldwin County                      85407          78491   
    2      1005    AL  Barbour County                       9761           8651   
    3      1007    AL     Bibb County                       9216           8303   
    4      1009    AL   Blount County                      26347          24156


    


   Unemployed_2011  Unemployment_rate_2011  Median_Household_Income_2011  \0             2076                     8.0                         48863   1             6916                     8.1                         50144   2             1110                    11.4                         30117   3              913                     9.9                         37347   4             2191                     8.3                         41940

   Med_HH_Income_Percent_of_StateTotal_2011  
0                                     117.9  1                                     121.0  2                                      72.7  3                                      90.2  4                                     101.2

现在,我们可以快速生成不同的等值线:

vis.tabular_data(merged, columns=['FIPS_Code', 'Civilian_labor_force_2011']) 
vis.to_json(path)

这只能告诉我们 LA 和 King 面积非常大,人口非常稠密。让我们再看看中等家庭收入:

vis.tabular_data(merged, columns=['FIPS_Code', 'Median_Household_Income_2011'])
vis.to_json(path)

明显很多高收入区域在东海岸或是其他高密度区域。我敢打赌,在城市层级这将更加有趣,但这需要等以后发布的版本。让我们快速重置地图,再看看国家失业率:

#Swap county data for state data, reset mapstate_data = pd.read_csv(state_unemployment)
vis.tabular_data(state_data, columns=['State', 'Unemployment'])
vis.geo_data(bind_data='data.id', reset=True, states=state_geo)
vis.update_map(scale=1000, projection='albersUsa')
vis + (['#c9cedb', '#0b0d11'], 'scales', 0, 'range')
vis.to_json(path)

地图即是我的激情所在——我希望 Vincent 能够更强,包含轻松的添加点、标记及其它的能力。


 End 

阅读排行榜/精华推荐
1
入门学习

如果有人质疑大数据?不妨把这两个视频转给他 

视频:大数据到底是什么 都说干大数据挣钱 1分钟告诉你都在干什么

人人都需要知道 关于大数据最常见的10个问题

2
进阶修炼

从底层到应用,那些数据人的必备技能

如何高效地学好 R?

一个程序员怎样才算精通Python?

3
数据源爬取/收集

排名前50的开源Web爬虫用于数据挖掘

33款可用来抓数据的开源爬虫软件工具

在中国我们如何收集数据?全球数据收集大教程

4
干货教程

PPT:数据可视化,到底该用什么软件来展示数据?

干货|电信运营商数据价值跨行业运营的现状与思考

大数据分析的集中化之路 建设银行大数据应用实践PPT

【实战PPT】看工商银行如何利用大数据洞察客户心声?              

六步,让你用Excel做出强大漂亮的数据地图

 数据商业的崛起 解密中国大数据第一股——国双

双11剁手幕后的阿里“黑科技” OceanBase/金融云架构/ODPS/dataV

金融行业大数据用户画像实践


讲述大数据在金融、电信、工业、商业、电子商务、网络游戏、移动互联网等多个领域的应用,以中立、客观、专业、可信赖的态度,多层次、多维度地影响着最广泛的大数据人群

36大数据

长按识别二维码,关注36大数据


搜索「36大数据」或输入36dsj.com查看更多内容。

投稿/商务/合作:dashuju36@qq.com


点击下方“阅读原文”查看更多

↓↓↓


今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/cxppxJ201F
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/3243
 
1032 次点击