本文为不同阶段的Python学习者从不同角度量身定制了49个学习资源。
初学者
Welcome to Python.org
Learning Python The Hard Way
Basic Data Types in Python – Real Python
How to Run Your Python Scripts – Real Python
Python Tutorial: Learn Python For Free | Codecademy
Google’s Python Class | Python Education | Google Developers
Learn Python – Free Interactive Python Tutorial
Jupyter Notebook: An Introduction – Real Python
Python Tutorial – W3Schools
Python | Kaggle
Learning Python: From Zero to Hero – freeCodeCamp.org
BeginnersGuide – Python Wiki
Python Tutorial – Tutorialspoint
Python (programming language) – Quora
Python – DEV Community – Dev.to
Python Weekly: A Free, Weekly Python E-mail Newsletter
The Ultimate List of Python YouTube Channels – Real Python
The Hitchhiker’s Guide to Python
Python: Online Courses from Harvard, MIT, Microsoft | edX
Python Courses | Coursera
进阶者

Getting started with Django | Django
LEARNING PATH: Django: Modern Web Development with Django
https://www.oreilly.com/learning-paths/learning-path-django/9781788998703/
来自O'Reilly的这个资源有助于为Python学习Django和Web开发技能提供更多策划。
A pandas cookbook – Julia Evans
https://jvns.ca/blog/2013/12/22/cooking-with-pandas/
Pandas Cookbook可用于清理和处理数据。使用它使我能够将数据清理到我需要的级别,以便进行机器学习等等。
它使用一个示例,展示如何过滤,分组数据并在其上执行功能 - 然后根据需要可视化数据。Pandas库是经过量身定制的,允许您有效地清理数据,并且可以对其进行转换并从聚合级别基础上查看趋势(使用方便的单行函数,如head()或describe)。
Newest ‘python’ Questions – Stack Overflow
Python – Reddit
Data Science – Reddit
Data science sexiness: Your guide to Python and R
https://thenextweb.com/dd/2016/04/08/start-using-python-andor-r-data-science-one-best/
我为The Next Web编写了本指南,以便区分Python和R以及它们在数据科学生态系统中的用法。从那以后,Python不断推进并开始使用许多曾经构成R在数据分析,可视化和探索方面的核心基础的库,同时也欢迎在驱动世界的基础机器学习库中。尽管如此,它仍然是一个有用的比较点和Python的资源列表。
Data Science Tutorial: Introduction to Using APIs in Python – Dataquest
Introduction to Data Visualization in Python – Towards Data Science
Top Python Web Development Frameworks to Learn in 2019
高级玩家

Beginner’s Guide to Machine Learning with Python
Free Machine Learning in Python Course – Springboard
Machine Learning – Reddit
Python – KDnuggets
Learn Python – Beginner through Advanced Online Courses – Udemy
A Brief Introduction to PySpark – Towards Data Science
scikit-learn: machine learning in Python
The Next Level of Data Visualization in Python – Towards Data Science
Machine Learning with Python | Coursera
Home – deeplearning.ai
fast.ai · Making neural nets uncool again
Learn and use machine learning | TensorFlow Core | TensorFlow
练习使用Python的资源

Datasets | Kaggle
Practice Python
Python Exercises – W3Schools
Solve Python | HackerRank
Project Euler: About
Writing your first Django app, part 1 | Django documentation | Django
Top 100 Python Interview Questions & Answers For 2019 | Edureka
原文链接:
https://code-love.com/2019/06/03/49-essential-resources-to-learn-python/