社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

Python专题——详解enumerate和zip

承志 • 5 年前 • 625 次点击  
阅读 23

Python专题——详解enumerate和zip

本文始发于个人公众号:TechFlow,原创不易,求个关注


今天是Python专题的第7篇文章,我们继续介绍迭代相关。

enumerate

首先介绍的是enumerate函数。

在我们日常编程的过程当中,经常会遇到一个问题。

在C语言以及一些古老的语言当中是没有迭代器这个概念的,所以我们要遍历数组或者是容器的时候,往往只能通过下标。有了迭代器之后,我们遍历的过程方便了很多,我们可以直接用一个变量去迭代一个容器当中的值。最简单的例子就是数组的遍历,比如我们要遍历items这个数组。我们可以直接:

for item in items:
复制代码

通过迭代器的方式我们可以很轻松地遍历数组,而不再需要下标,也不需要计算数组的长度了。但是如果我们在循环体当中需要知道元素的下标该怎么办

难道我们真的只能在下标和迭代器当中选择一个吗,比如在循环体的外面添加一个变量来记录下标?

idx = 0
for item in items:
operation()
idx += 1
复制代码

这样可以解决问题,但是很麻烦,一点也不简洁,用专业的话来说一点也不pythonic(符合Python标准的代码)。为了追求pythonic,于是有了enumerate函数,来解决了我们又想直接迭代又需要知道元素下标的情形。

它的用法也很简单,我们把需要迭代的对象或者迭代器传入enumerate函数当中,它会为我们创建一个新的迭代器,同时返回下标以及迭代的内容。我们来看一个例子:

for i, item in enumerate(items):
复制代码

除此之外,enumerate还支持传入参数。比如在某些场景当中,我们希望下标从1开始,而不再是0开始,我们可以额外多传入一个参数实现这点:

for i, item in enumerate(items, 1):
复制代码

循环是我们编程的时候必不可少的操作,也正因此,enumerate函数使用非常广泛。但是有一点需要注意,如果我们迭代的是一个多元组数组,我们需要注意要将index和value区分开。举个例子:

data = [(1, 3), (2, 1), (3, 3)]
复制代码

在不用enumerate的时候,我们有两种迭代方式,这两种都可以运行。

for x, y in data:

for (x, y) in data:
复制代码

但是如果我们使用enumerate的话,由于引入了一个index,我们必须要做区分,否则会报错,所以我们只有一种迭代方式:

for i, (x, y) in enumerate(data):
复制代码

zip

接下来要介绍的另一个函数同样是方便我们迭代的,不过它针对的是另一个场景——多对象迭代

它的应用场景非常简单,就是我们想要同时迭代多份数据,比如用户的名字和用户的职业数据是分开的,我们希望同时遍历一个用户的职业和名字。如果不使用zip,我们可能只能放弃迭代器回到传统的下标遍历的模式了。这样当然是可以的,不过有两个小问题,第一个小问题当然是代码的可读性变差了,不够pythonic,第二个问题是我们需要维护两个容器长度不一样的情况,会增加额外的代码。而使用zip,可以同时解决以上两个问题。

我们来看一个例子:

names = ['xiaoming', 'xiaohua', 'xiaohei', 'xiaoli']
jobs = ['coach', 'student', 'student', 'student', 'professor']

for name, job in zip(names, jobs):
print(name, job)
复制代码

最后输出的结果是人名和职业的tuple:

xiaoming coach
xiaohua student
xiaohei student
xiaoli student
复制代码

上面举的例子当中,names和jobs的长度其实是不一致的,在使用了zip的情况下,会自动替我们按照其中较短的那个进行截断。如果我们不希望截断,我们也可以使用itertools下的zip_longest来代替zip:

from itertools import zip_longest
for name, job in zip_longest(names, jobs):
复制代码

这样的话长度不够的元素会以None来填充,zip_longest提供了一个参数fillvalue,可以填充成我们指定的值。

无论是zip还是zip_longest,都可以支持多迭代器的遍历。比如:

names = ['xiaoming', 'xiaohua', 'xiaohei', 'xiaoli']
jobs = ['coach', 'student', 'student', 'student', 'professor']
hobbies = ['footbal', 'tennis', 'badminton', 'basketbal']

for name, job, hobby in zip(names, jobs, hobbies):
print(name, job, hobby)
复制代码

zip除了方便我们迭代遍历之外,另一个很大的用处是可以很方便地生成dict。比如刚才的例子当中,我们想生成一个名称和职业的dict,一般的办法当然是先定义一个dict,然后遍历所有的key和value,来生成dict。然而使用zip,我们可以将这个操作简化到一行代码:

jobDict = dict(zip(names, jobs))
复制代码

需要注意的是,我们调用zip返回的结果其实是一个迭代器,我们在转化成dict的时候自动遍历了迭代器当中的内容。比如我们如果直接打印出zip调用结果的话,就会发现屏幕上输出的是一个迭代器的地址:

print(zip(names, jobs))
>>> <zip object at 0x10ec93b40>
复制代码

我们想要获得它的内容,需要将它手动转成list:




    
print(list(zip(names, jobs)))
>>> [('xiaoming', 'coach'), ('xiaohua', 'student'), ('xiaohei', 'student'), ('xiaoli', 'student')]
复制代码

无论是enumerate还是zip其实底层都是基于迭代器实现的,从原理上来说并没有什么太深奥的内容,而且我们不使用它们也不影响我们写代码。但是Python之所以是Python,之所以很多人称道它简洁的语言和逻辑,离不开我们广泛地使用这些简化代码逻辑的工具和方法。因此我们加以了解是非常有必要的,希望大家都能写出pythonic的代码,不仅写代码能力强,而且代码本身也漂亮。

今天的文章就是这些,如果觉得有所收获,请顺手点个在看或者转发吧,你们的举手之劳对我来说很重要。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/56703
 
625 次点击