python
GenderNet_VLen(
(embeddings_appKey): Embedding(xxx, 64, padding_idx=0)
(embeddings_packageName): Embedding(xxx, 32, padding_idx=0)
(embeddings_model): Embedding(xxx, 32, padding_idx=0)
(embeddings_app): Embedding(xxx, 512, padding_idx=0)
(embeddings_deviceName): Embedding(xxx, 32, padding_idx=0)
(embeddings_adt1): Embedding(xxx, 16, padding_idx=0)
(embeddings_adt2): Embedding(xxx, 16, padding_idx=0)
(embeddings_adt3): Embedding(xxx, 16, padding_idx=0)
(fc): Sequential(
(0): Linear(in_features=720
, out_features=64, bias=True)
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.6)
(4): Linear(in_features=64, out_features=32, bias=True)
(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.6)
(8): Linear(in_features=32, out_features=16, bias=True)
(9): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Dropout(p=0.6)
(12): Linear(in_features=16, out_features=2, bias=True)
)
)