我对这个库不是很有经验,但它似乎需要一个系列而不是一个数据列表。导入pandas.pd并将数据转换为pd.Series:
import matplotlib.pyplot as plt
from statsmodels.tsa.holtwinters import ExponentialSmoothing, SimpleExpSmoothing, Holt
import pandas as pd
data = [253993,275396.2,315229.5,356949.6,400158.2,442431.7,495102.9,570164.8,\
640993.1,704250.4,767455.4,781807.8,776332.3,794161.7,834177.7,931651.5,\
1028390,1114914]
series = pd.Series(data)
# Holt's Method
fit1 = Holt(series).fit(smoothing_level=0.8, smoothing_slope=0.2, optimized=False)
l1, = plt.plot(list(fit1.fittedvalues) + list(fit1.forecast(5)), marker='o')
fit2 = Holt(series, exponential=True).fit(smoothing_level=0.8, smoothing_slope=0.2, optimized=False)
l2, = plt.plot(list(fit2.fittedvalues) + list(fit2.forecast(5)), marker='o')
fit3 = Holt(series, damped=True).fit(smoothing_level=0.8, smoothing_slope=0.2)
l3, = plt.plot(list(fit3.fittedvalues) + list(fit3.forecast(5)), marker='o')
l4, = plt.plot(series, marker='o')
plt.legend(handles = [l1, l2, l3, l4], labels = ["Holt's linear trend", "Exponential trend", "Additive damped trend", 'data'], loc = 'best', prop={'size': 7})
plt.show()