社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

Python绘制地图神器,上手直接开大!

Python编程 • 4 年前 • 303 次点击  
来自公众号:凹凸数据

之前给大家介绍过多种Python可视化模块,但使用他们进行地理可视化都很简陋。

所以想要绘制更精美的可视化地图?想在地图上自由的设置各种参数?想获得灵活的交互体验?

今天它就来了,Python绘制地图神器folium,上手直接开大!

一、folium简介和安装

folium 建立在 Python 生态系统的数据应用能力和 Leaflet.js 库的映射能力之上,在Python中操作数据,然后通过 folium 在 Leaflet 地图中可视化。

folium 相比较于国内百度的 pyecharts 灵活性更强,能够自定义绘制区域,并且展现形式更加多样化。[1]

1. folium的简介

  • Folium是建立在 Python 生态系统的数据整理 Datawrangling 能力和 Leaflet.js 库的映射能力之上的开源库。用 Python 处理数据,然后用 Folium 将它在 Leaflet 地图上进行可视化。Folium能够将通过 Python 处理后的数据轻松地在交互式的 Leaflet 地图上进行可视化展示。它不单单可以在地图上展示数据的分布图,还可以使用 Vincent/Vega 在地图上加以标记。
  • 这个开源库中有许多来自 OpenStreetMap、MapQuest Open、MapQuestOpen Aerial、Mapbox和Stamen 的内建地图元件,而且支持使用 Mapbox 或 Cloudmade 的 API 密钥来定制个性化的地图元件。Folium支持 GeoJSON 和 TopoJSON 两种文件格式的叠加,也可以将数据连接到这两种文件格式的叠加层,最后可使用 color-brewer 配色方案创建分布图。
  • Folium可以让你用 Python 强大生态系统来处理数据,然后用 Leaflet 地图来展示。Folium内置一些来自 OpenStreetMap、MapQuest Open、MapQuest Open Aerial、Mapbox和Stamen 的地图元件(tilesets),并且支持用 Mapbox 或者 Cloudmade API keys 来自定义地图元件。Folium支持 GeoJSON 和 TopJSON 叠加(overlays),绑定数据来创造一个分级统计图(Choropleth map)。但是,Folium库绘制热点图的时候,需要联网才可显示。

2. 安装folium

pip install folium -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

👆这里直接使用了国内豆瓣源

二、基本使用

folium 显示地图的类为 folium.Map,类的声明如下:

class folium.Map(location=None, width='100%', height='100%', left='0%', top='0%', position='relative', tiles='OpenStreetMap', attr=None, min_zoom=0, max_zoom=18, zoom_start=10, min_lat=-90, max_lat=90, min_lon=-180, max_lon=180, max_bounds=False, crs='EPSG3857', control_scale=False, prefer_canvas=False, no_touch=False, disable_3d=False, png_enabled=False, zoom_control=True, **kwargs)

几个重要的参数:

  • location:经纬度,list 或者 tuple 格式,顺序为 latitude, longitude
  • zoom_start:缩放值,默认为 10,值越大比例尺越小,地图放大级别越大
  • control_scale:Bool型,控制是否在地图上添加比例尺,默认为 False 即不添加
  • tiles:显示样式,默认 "OpenStreetMap",也就是开启街道显示
  • crs:地理坐标参考系统,默认为 "EPSG3857"

1. 各级别地图

世界地图

import folium

print(folium.__version__)

# define the world map
world_map = folium.Map()
# save world map
world_map.save('test_01.html')

结果如下:

当前folium版本:0.11.0

国家地图

import folium
# define the national map
national_map = folium.Map(location=[35.3100.6], zoom_start=4)
# save national map
national_map.save('test_02.html')

结果如下:

市级地图

其实改变地图显示也就是改变显示的经纬度和缩放比例,省级、市级、县级用法相似,这里举一个市级的例子为例,如北京市:

import folium
# define the national map
city_map = folium.Map(location=[39.93116.40], zoom_start=10)
# save national map
city_map.save('test_03.html')

2. 在地图上标记

普通标记

添加普通标记用 Marker,可以选择标记的图案。

import folium

bj_map = folium.Map(location=[39.93115.40], zoom_start=12, tiles='Stamen Terrain')

folium.Marker(
    location=[39.95115.33],
    popup='Mt. Hood Meadows',
    icon=folium.Icon(icon='cloud')
).add_to(bj_map)

folium.Marker(
    location=[39.96115.32],
    popup='Timberline Lodge',
    icon=folium.Icon(color='green')
).add_to(bj_map)

folium.Marker(
    location=[39.93115.34],
    popup='Some Other Location',
    icon=folium.Icon(color='red', icon='info-sign')    # 标记颜色  图标
).add_to(bj_map)

bj_map.save('test_04.html')

结果如下:

圆形标记

添加圆形标记用 Circle 以及 CircleMarker

import folium

bj_map = folium.Map(location=[39.93116.40], zoom_start=12, tiles= 'Stamen Toner')

folium.Circle(
    radius=200,
    location=(39.92116.43),
    popup='The Waterfront',
    color='#00FFFF',   # 颜色
    fill=False,        # 填充
).add_to(bj_map)

folium.CircleMarker(
    location=(39.93116.38),
    radius=50,   # 圆的半径
    popup='Laurelhurst Park',
    color='#FF1493',
    fill=True,
    fill_color='#FFD700'
).add_to(bj_map)

bj_map.save('test_05.html')

结果如下:

动态放置标记

import folium

dynamic_tagging = folium.Map(
    location=[46.8527-121.7649],
    tiles='Stamen Terrain',
    zoom_start=13
)

folium.Marker(
    [46.8354-121.7325],
    popup='Camp Muir'
).add_to(dynamic_tagging)

dynamic_tagging.add_child(folium.ClickForMarker(popup='Waypoint'))
dynamic_tagging.save('test_06.html')

结果如下:

更多详细使用可以参考官方文档:http://python-visualization.github.io/folium/quickstart.html[2]

三、实战案例

以将停车场地理位置数据可视化在地图上示例,熟悉 folium 地图可视化的使用。

1. 获取经纬度数据

停车场地理位置数据来源于网络,数据真实可靠,下面先利用 Python 爬虫获取数据

#数据来源:http://219.136.133.163:8000/Pages/Commonpage/login.aspx

import requests
import csv
import json
import logging

headers = {
    'X-Requested-With''XMLHttpRequest',
    'User-Agent''Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36'
}
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
url = 'http://219.136.133.163:8000/Pages/Commonpage/AsyGetData.asmx/GetParkList'
s = requests.session()
s.get(url, headers=headers)
for i in range(1318):
    data = {
        'cp': str(i),
        'ps''10',
        'kw''',
        'lon''undefined',
        'lat''undefined',
        'type''undefined'
    }
    url = 'http://219.136.133.163:8000/Pages/Commonpage/AsyGetData.asmx/GetParkList'
    # post提交表单数据
    res = s.post(url, data=data, headers=headers)
    # 重新设置编码
    res.encoding = 'utf-8'
    # str转json  便于提取数据
    result = json.loads(res.text)['Result']
    for j in result:
        park_name = j['ParkName']
        Lon = j['Longitude']
        Lat = j['Latitude']
        with open('parkings.csv''a+', newline='' , encoding='gb18030'as f:
            f_csv = csv.writer(f)
            f_csv.writerow([park_name, Lon, Lat])
            logging.info([park_name, Lon, Lat])

结果如下:

共有 3170 个停车场地理位置数据

2. folium地图可视化

import pandas as pd
import folium

# 读取csv数据
data = pd.read_csv('parkings.csv', encoding='gbk')
# 传入纬度和经度数据
park_map = folium.Map(location=[data['latitude'].mean(), data['longitude'].mean()], zoom_start=10, control_scale=True,)
# 实例化 folium.map.FeatureGroup 对象
incidents = folium.map.FeatureGroup()
for name,row in data.iterrows():
    incidents.add_child(
        folium.CircleMarker(            # CircleMarker表示花圆
            (row["latitude"], row["longitude"]),   # 每个停车场的经纬度坐标
            radius=7,                   # 圆圈半径
            color='#FF1493',            # 标志的外圈颜色
            fill=True,                  # 是否填充
            fill_color='#00FF00',       # 填充颜色
            fill_opacity=0.4            # 填充透明度
        )
    )

park_map.add_child(incidents)
park_map.save('park_map1.html')

效果如下:

这样看起来有点乱,下面我们来统计一下各个局域的停车场数量

import pandas as pd
import folium
from folium import plugins

data = pd.read_csv('parkings.csv', encoding='gbk')
park_map = folium.Map(location=[data['latitude'].mean(), data['longitude'].mean()], zoom_start=10, control_scale=True,)
marker_cluster = plugins.MarkerCluster().add_to(park_map)

for name,row in data.iterrows():
    folium.Marker(location=[row["latitude"], row["longitude"]]).add_to(marker_cluster)
park_map.save('park_map2.html')

效果如下:

这样能对各个局域停车场的数量在地图上进行统计,将图不断放大以后,还可以显示每个停车场的具体位置,非常方便。

参考资料

[1]

Python绘制地图神器folium入门: https://blog.csdn.net/weixin_38169413/article/details/104806257

[2]

http://python-visualization.github.io/folium/quickstart.html




推荐↓↓↓

人工智能与大数据技术

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/113375
 
303 次点击