社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

酷炫的深度学习网络图怎么绘制出来的?

小白学视觉 • 3 年前 • 474 次点击  

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文我们聊聊如何才能画出炫酷高大上的神经网络图,下面是常用的几种工具。


作者&编辑 | 言有三


NN-SVG


这个工具可以非常方便的画出各种类型的图,是下面这位小哥哥开发的,来自于麻省理工学院弗兰克尔生物工程实验室, 该实验室开发可视化和机器学习工具用于分析生物数据。

github地址:https://github.com/zfrenchee

画图工具体验地址:http://alexlenail.me/NN-SVG/

可以绘制的图包括以节点形式展示的FCNN style,这个特别适合传统的全连接神经网络的绘制。

以平铺网络结构展示的LeNet style,用二维的方式,适合查看每一层featuremap的大小和通道数目。

以三维block形式展现的AlexNet style,可以更加真实地展示卷积过程中高维数据的尺度的变化,目前只支持卷积层和全连接层。

这个工具可以导出非常高清的SVG图,值得体验。


2 PlotNeuralNet


这个工具是萨尔大学计算机科学专业的一个学生开发的,一看就像计算机学院的嘛。

首先我们看看效果,其github链接如下,将近4000 star:

https://github.com/HarisIqbal88/PlotNeuralNet

看看人家这个fcn-8的可视化图,颜值奇高。

使用的门槛相对来说就高一些了,用LaTex语言编辑,所以可以发挥的空间就大了,你看下面这个softmax层,这就是会写代码的优势了。

其中的一部分代码是这样的,会写吗。

\pic[shift={(0,0,0)}] at (0,0,0) {Box={name=crp1,caption=SoftmaxLoss: $E_\mathcal{S}$ ,%    

fill={rgb:blue,1.5;red,3.5;green,3.5;white,5},opacity=0.5,height=20,width=7,depth=20}};    


相似的工具还有:https://github.com/jettan/tikz_cnn


3 ConvNetDraw


ConvNetDraw是一个使用配置命令的CNN神经网络画图工具,开发者是香港的一位程序员,Cédric cbovar

采用如下的语法直接配置网络,可以简单调整x,y,z等3个维度,github链接如下:

https://cbovar.github.io/ConvNetDraw/

使用方法如上图所示,只需输入模型结构中各层的参数配置。

挺好用的不过它目标分辨率太低了,放大之后不清晰,达不到印刷的需求。


4 Draw_Convnet


这一个工具名叫draw_convnet,由Borealis公司的员工Gavin Weiguang Ding提供。

简单直接,是纯用python代码画图的,

https://github.com/gwding/draw_convnet

看看画的图如下,核心工具是matplotlib,图不酷炫,但是好在规规矩矩,可以严格控制,论文用挺合适的。


类似的工具还有:https://github.com/yu4u/convnet-drawer


5 Netscope


下面要说的是这个,我最常用的,caffe的网络结构可视化工具,大名鼎鼎的netscope,由斯坦福AILab的Saumitro Dasgupta开发,找不到照片就不放了,地址如下:

https://github.com/ethereon/netscope

左边放配置文件,右边出图,非常方便进行网络参数的调整和可视化。这种方式好就好在各个网络层之间的连接非常的方便。


其他


再分享一个有意思的,不是画什么正经图,但是把权重都画出来了。

http://scs.ryerson.ca/~aharley/vis/conv/


看了这么多,有人已经在偷偷笑了,上PPT呀,想要什么有什么,想怎么画就怎么画。





不过妹子呢?
怎么不来开发一个粉色系的可视化工具呢?
类似于这样的


好消息,小白学视觉团队的知识星球开通啦,为了感谢大家的支持与厚爱,团队决定将价值149元的知识星球现时免费加入。各位小伙伴们要抓住机会哦!


下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/120101
 
474 次点击